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Abstract—1In this paper, we address multi-robot formation
planning where nonholonomic robots collaboratively transport
objects using a deformable sheet in unstructured, cluttered
environments. The formation can expand or contract to adjust
the height of the object on the sheet. However, interactions
between the robots and sheet introduce complex constraints for
formation planning. Complexity increases further when the only
feasible solution requires crossing an obstacle, i.e. where robots
navigate in different homotopy classes around an obstacle such
that the object hovers above it. Most existing nonholonomic
formation planners do not admit obstacle crossing, limiting
performance. In this paper, we present a two-stage iterative
trajectory optimization framework which explicitly considers
obstacle crossing. First, we capture the set of all feasible
homotopy classes for each robot using a topological probabilistic
roadmap. We then iteratively apply numerical optimization
techniques to find a safe and feasible solution for the formation.
We demonstrate the efficacy of our framework in simulation
and on real robot hardware.

I. INTRODUCTION

Recently, significant research has considered collabora-
tive object transportation using formations of mobile robots
manipulating objects by pushing, grasping, or caging [1].
Outside of robotics, deformable sheets have been used to
carry objects such as hospital patients or fragile objects [2].
Deformable sheets can be applied to multi-robot object trans-
portation, where robots hold up the corners of the sheet and
the object lies in the middle. This improves formation flexi-
bility, as robots can adjust the sheet height by moving further
apart to avoid obstacles [3]. However, it is challenging to
synthesize feasible and efficient formation trajectories using
these sheets, as we must consider how the robots and sheet
interact, and how to maintain the formation while avoiding
collisions with obstacles. Complexity increases further when
the only feasible solution requires robots to navigate through
multiple distinct homotopy classes. For example, robots in
the same formation may be positioned on opposite sides of an
obstacle while collectively transporting an object on a sheet
above the obstacle (see Figure 1). For object transportation,
such obstacle crossing behaviors should be handled while
maintaining the formation. In this paper, we use nonholo-
nomic robots to perform these challenging behaviours. We

Weijian Zhang, Charlie Street and Masoumeh Mansouri are with
the School of Computer Science at the University of Birming-
ham, wxzl63@student.bham.ac.uk and {c .l.street,
m.mansouri}@bham.ac.uk
Charlie Street and Masoumeh Mansouri are UK participants in Horizon Eu-
rope Project CONVINCE, and supported by UKRI grant number 10042096.
For the purpose of open access, the authors have applied a Creative
Commons Attribution (CC BY) license to any Accepted Manuscript version
arising.

5 30 ’5

e

oom[ T o 8m

|:I: Car-like robot D Deformable sheet @ Transported object |

Fig. 1. Four car-like robots collaboratively transporting an object with a
deformable sheet in an unstructured environment. The irregular obstacles
randomly distributed in the environment vary in height. The image in the
top left demonstrates our transportation setup on three Turtlebots.

consider nonholonomic robots for their enhanced robustness
during transportation and widespread applicability in indus-
trial settings.

In this paper, we address collaborative object transporta-
tion for nonholonomic robot formations in cluttered envi-
ronments using a deformable sheet (see Fig. 1). For this,
we introduce a two-stage iterative trajectory optimization
framework. First, we identify a set of paths for each robot
that are homotopically distinct using a topological proba-
bilistic roadmap (see Sec. IV). Each homotopically distinct
path makes different routing decisions around each of the
obstacles in the environment. These paths are then used as
an initial guess for the collaborative trajectory optimization
problem, which is formulated as a joint optimal control
problem (OCP). To simplify trajectory optimization, we
capture object height constraints implicitly in the constraints
of the formation. With this, we then iteratively synthesize
a safe and feasible locally optimal trajectory for a given
homotopy class (see Sec. V).

Though previous work has considered multi-robot object
transportation using a deformable sheet [3]-[10], ours is
the first to allow nonholonomic robots to cross obstacles in
dense, unstructured environments. The primary contributions
of this paper are i) a heuristic path exploration method
which efficiently evaluates a set of homotopically distinct
solution spaces for the formation; and ii) a two-stage iterative
motion planning framework for finding locally time-optimal
collision-free formation trajectories using a deformable sheet.
We demonstrate the efficacy of our proposed framework in
simulation and on hardware. All corresponding software is
released open source online'.

'https://github.com/HyPAIR/CPDOT
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II. RELATED WORK

Deformable Object Modelling. Deformable sheets have
high degrees of freedom, making it difficult to predict the
motion of objects lying in the sheet. Deformable sheets
are often modelled for robotic manipulation using physics-
and geometry-based models [11]. Physics-based models use
physics simulators to calculate object motion relative to the
sheet. However, these models are often highly complex and
challenging to construct accurately, making them unsuitable
for real-time applications. Geometry-based models approx-
imate the sheet through a set of geometric constraints to
provide efficient estimates of object deformation [12].

Formation-Level Obstacle Avoidance. In [7], [9], formation
motion planning is simplified using the geometric constraints
of the sheet, reducing the complexity of the interaction
model. In [10], a centralized planning and control algorithm
is presented which efficiently guides a formation of car-
like robots while transporting a net carrying an object in
unstructured environments. However, [7], [9], [10] treat the
formation as a solid two-dimensional object which must
remain strictly separated from obstacles to avoid collisions.
This collision avoidance strategy can easily fail in environ-
ments with dense obstacles [8].

Formations can flexibly avoid obstacles by passing through
them, i.e. allowing robots to travel either side of an obstacle
assuming the object is high enough. In [4]-[6], a formation
of three omnidirectional mobile robots grip and support a
deformable sheet to manipulate and transport objects along a
given trajectory. However, as the number of robots increases,
the transported object may have different equilibrium states
on the sheet, i.e. different parts of the sheet can be taut or
slack. This makes it challenging to identify the location of the
object. A virtual variable cable model (VVCM) is presented
in [3] which simplifies object-sheet interactions into a set of
dynamically changing cables. With this, the equilibrium of
the object on the sheet is represented using the tension state
of the virtual cables in a quasi-static condition. This allows
the object’s position under different formation configurations
to be estimated quickly. The authors then present a local
planner which allows the formation to navigate through
obstacles, however it relies heavily on the robots being
holonomic. In [8], a formation-level path planning algorithm
is introduced to navigate through dense environments,
however its success rate is highly dependent on how finely
the environment is discretized. Further, all virtual cables
must remain taut during transportation which reduces the
flexibility of the formation. In [13], [14], cable-driven paral-
lel robots (CDPRs) use physical cables to transport objects.
A reinforcement learning approach for CDPR dynamic
obstacle avoidance is presented in [13], however learning
is complex and does not transfer to different environments.
In [14], an optimization-based trajectory planner for CDPRs
is presented. This approach requires the coordinates and
timesteps of the object’s passage through obstacles prior to
planning, reducing its applicability and flexibility.

In contrast to [3]-[8], our framework is applicable to non-

Fig. 2. A formation of four car-like robots supports an object (green) with
a deformable sheet (blue). (a) The 2D coordinate system of the undeformed
sheet (top view). (b) The 3.D coordinate system of the robot formation based
on the virtual variable cables model [3].

holonomic robots. Also, unlike [9], [10], we allow formations
to navigate through obstacles, improving the transportation
success rate in dense and unstructured environments.

III. PROBLEM STATEMENT

In this paper, we consider a formation of N car-like
nonholonomic robots that transport an object using a de-
formable sheet. Let YW C SE(3) be the 3D workspace, and
O C SE(3) be the set of static convex polyhedral obstacles
which are known a priori. During object transportation, the
robots move in 2D space, whereas the transported object
moves in 3D. To simplify the object transportation problem,
we apply the assumptions in [3], i.e. the object is a point
mass, the object’s motion is quasi-static, and the deformable
sheet is inelastic, such that the object moves freely under
gravity towards the position of minimum potential energy
on the sheet. For robot ¢ € {1,..., N}, we define p;(t) =
(xi(t), yi(t))T C SE(2) as the coordinate of the midpoint
of the rear axle and 6;(t) € [—m, 7) as the robot’s orientation
in Cartesian space. P, = [Zo, Yo, 20]T C SE(3) denotes
the coordinate of the object. A 2D view of a four-robot
formation is shown in Fig. 2(a), where the support points
of the sheet v; form a convex polygon with N vertices.
We capture the formation topology by labelling the robots
sequentially as {1, 2, 3, 4} in an anticlockwise direction.
The topological order must remain unchanged during trans-
portation or the sheet will fold or twist. We define N (i) as
the robot number adjacent to robot 4, i.e. N(i) = i+ 1 if
i < N, and N(i) = 1 otherwise. A 3D view of the same
formation is shown in Fig. 2(b), where each robot’s support
point r; is fixed at a constant height z,, i.e., r; = [p;, z,]%.
In this paper, we use a bicycle model [15] to describe the
kinematics of the robots and assume the robots steer with
perfect rolling and no slipping. We denote a trajectory for
robot i as T;(t) = [z;(t), wi(t)]T, t € [0, ts], where z;(t)
and u;(t) represent the state and control parameters, and ¢
represents the time robot ¢ should reach its target while fully
tracking 7;.

Under the above assumptions, to solve the object trans-
portation problem we must obtain trajectories 7; for each
robot which transport the object from its initial configuration
z$ to its target configuration z{ while avoiding robot and
object collisions. We formulate this as a joint OCP (Prob-
lem (1)) as below:
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N

zi%iir,ltf ;/0 w; ()T W, (t) dt + wit (1a)
s.t. kinematic constraints, (1b)
z<z(t) <z u<ut) <T, (Ic)
Zi(O) = Zf7 ui(o) = uf, (1d)
zi(ty) = 2], w(ty) = uf, (le)
tp >0, (1f)
G(zi(t), wi(t), t) <0, (1g)

vt e [0, tf], Vie{l,2,...,N},

where W € R?*2 s a diagonal matrix which penalizes
control effort, and w;ty is a time regularization term which
minimizes the trajectory execution time. The OCP constraints
capture the robots’ kinematic constraints (1b), solution fea-
sibility constraints (lc), initial boundary constraint (1d),
terminal boundary constraint (le), and positivity constraints
on the terminal time (1f). (1g) comprises the robots’ safety
constraints, which we describe in Sec. V.

To solve (1), we propose Alg. 1. The remainder of the
paper describes each step of Alg. 1 in detail. In summary, we
begin by identifying a set of homotopically distinct paths for
each robot which make different decisions to avoid obstacles.
We build combinations of these paths, one for each robot, and
then filter and rank them to form a rich set of initial guesses
(line 1-3) to guide the solution of the joint OCP in (1). We
then iteratively test each combination of paths in order and
solve an independent OCP until a feasible solution is found
(lines 4-23). To simplify the OCP while ensuring object
collision avoidance, we convert the object height constraint
into a set of constraints over the formation. These constraints
are iteratively adjusted until the object is collision-free (lines
13-20). We proceed by discussing the initial guess generation
in Sec. IV, and the OCP safety constraints in Sec. V.

IV. INITIAL GUESS GENERATION

In this section, we present our approach for generating
initial guesses for formation trajectory optimization.

A. Generating Homotopically Distinct Paths

The solution quality for the OCP in (1) is reliant on having
a high-quality initial guess. The initial guess should approx-
imate the homotopy class of the optimal joint trajectory.
Therefore, the first step in generating our initial guess is to
account for all homotopically distinct paths through the envi-
ronment. To achieve this, we build a topological probabilistic
roadmap (PRM) [16] (see line 1 in Alg. 1) using the centres
of the initial and target formation configurations. An example
PRM is shown in Fig. 3. Multiple homotopically distinct
shortest paths from the initial to target formation configura-
tions are then extracted from the PRM using path-searching
techniques (see the blue lines in Fig. 3). We then rewire
these paths for each of the robots using a reverse search
to connect the robot’s initial and target configurations to the
path (the dashed red lines in Fig. 3). The search is halted if a

homotopically distinct paths

E robot 1
= «ms
= ¥
WBrobot N, D !
start formation goal formation
centre centre

Fig. 3. The outcome of running [16] in a simple environment with three
obstacles. The set of homotopically distinct paths are shown in blue and the
rewired shortest paths for robot 1 are shown in red.

collision occurs or the robot’s initial and target configurations
meet. The final robot path combines a segment of the
homotopically distinct path (the solid red lines in Fig. 3) and
the routes to and from it. By selecting a path for each robot
we build a guiding path for the entire formation (line 2).

B. Heuristics Filtering and Sorting

An initial guess for the OCP in (1) can be computed by
selecting one of the paths in Sec. IV-A for each robot. This
generates a set of combinations of paths comb;. It becomes
intractable to solve (1) for each comb;, as the number of
homotopy classes increases exponentially with the number of
obstacles. Therefore, we introduce a number of heuristics to
filter and sort these combinations (see line 3 of Alg. 1). Given
a path for each robot, we begin by uniformly discretizing the
paths into K waypoints. We then record any obstacles which
intersect the line segments between corresponding waypoints
on any two paths. If the height of the obstacle is higher
than the maximum height of the object in the deformable
sheet, that combination of paths is discarded. We also record
the Euclidean distance between corresponding waypoints. If
the inter-distance exceeds a threshold ¢4, the formation is
unlikely to be maintained, and thus the combination is dis-
carded. Finally, to prevent the sheet from folding or twisting,
we require the robots assigned to the same homotopy class
to be adjacent [17], i.e. their labels are consecutive. After
completing this initial filtering, we introduce a heuristic cost
function to sort the remaining combinations:

J=X M- -J+X- T+ A3 Jp + Mg Js. )

Here, J; and J; represent the average path length and the
average number of waypoints for all robots, respectively. Jj,
is 1 if all selected paths are in the same homotopy class and
0 otherwise. Jg counts the number of topological violations
using the method proposed in [10], and then estimates the
feasibility of homotopy assignments. A, Az, A3 and Ay are
weight parameters. The first two terms encourage shorter
paths and fewer detours. The third term prioritizes crossing
obstacles over avoiding them to avoid robot congestion
and exploit the full solution space. The fourth term tries to
maintain the consistency of the formation’s topology.

C. Joint Trajectory Generation

Given a combination of paths comb;, we now generate
a corresponding joint trajectory which can act as an initial
guess for the OCP in (1) (line 5). For this, we construct
a safe corridor for each robot that ensures the initial guess
remains in the same homotopy class as the paths in comb;.
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Algorithm 1: The Proposed Formation Planner.

1 path < TopoPRM(map, p,,, P2

2 comb « IdentifyComb(path, {p;}~ ,, {p?}N¥,);
3 comb* < Filtering&Sorting(comb);

4 foreach comb; € comb™* do

5 [T9uess, SC,] < GeneratelnitialGuess(comb,);
6 | foreacht < [0, t;] do

7 // Set min inter-robot distance
8 CH (t) <« do;

9 | GenerateOCP(T9ucss SC;, CH);

10 [T, is_failed] + Solve (1);

11 if is_failed then

12 | continue the outer loop in line 4;

13 | while !SatisfiedHeightCons(T) do

14 foreach ¢ € [0, t;] do

15 if HeightViolation (T (t)) then

16 if MaximumFormation(C*") then

17 | continue the outer loop in line 4;
18 foreach i € [1,..., N] do

19 | CH(t) + max{l"*, CH(t) + 6};
20 [T, is_failed] < Solve (1);

21 if is_failed then

22 ‘ continue the outer loop in line 4;

23 return 7 ;

Safe corridors are computed by using the waypoints in each
robot’s path as a seed to compute the corresponding obstacle-
free convex polygon using a convex decomposition technique
called IRIS [18]. Formally, the safe corridor for robot i
using the path in comb; can be represented as SC§ =
{geR?: Alg<bi}, where Al € R"*? and b} € R™
describe the hyperplane of a convex polygon [18]. n’ is the
number of hyperplanes, equivalent to the number of edges in
the convex region. Using the safe corridors, we then adapt
hybrid A* [19] to find a homotopically consistent, collision-
free, and dynamically feasible path for each robot. When
expanding a child node in hybrid A*, it must be constrained
to the safe corridor to ensure it is collision-free, and remain
homotopically consistent with the selected initial guess, i.e.:

K
pi(t) C | J 8¢, t €0, tg]. 3)
j=1

These paths are then augmented with a minimum-time veloc-
ity profile to form trajectories [20]. Finally, we proportionally
relax the velocities of all robots [21] to ensure that they reach
their respective target positions simultaneously. The resulting
trajectories are recorded in 79%¢5%,

V. ITERATIVE TRAJECTORY OPTIMIZATION

In this section, we describe the safety constraints in
OCP (1) and how they are incorporated during optimization.

A. Safety Constraints

Environmental Obstacle Avoidance Constraints. In our
framework, we consider the shape of the robots when defin-

Algorithm 2: Function SatisfiedHeightCons(7).

1 foreach ¢ € [0, t;] do
{r;} Y| + DeriveRobotPosition(7 ());
P, FK({r;}}Ly, {vi}}l, 20);
Ocross < DetectObstacle(x,, yo);
h + min(z,);
foreach obstacle € O,,.pss do
if DeriveHeight(obstacle) > h + ¢, then
| return false;
return true;

o e N9 N N AW N

ing obstacle collision avoidance constraints. Recall that a
robot’s centroid and orientation are defined as in Fig. 2(a).
At time ¢, the footprint of robot ¢ can be described by the
vertices {V;,(t) € R? : V,;,(t) = pi(t) + R(0:(1)) -
L, 1 € {1,...,4}}, where R(6;(t)) is the rotation matrix
representing the orientation of the body frame relative to the
world frame, and 1;; is the relative coordinate of the I-th
vertex within the body frame. Given the initial trajectories
computed in Sec. IV, we run IRIS [I8] once more to
generate a safe corridor for each robot. To avoid collisions
with obstacles and maintain topological equivalence with the
initial guess trajectory, robot ¢’s footprint must remain inside
the safe corridor at each timestep:

Ai(t) - Via(t) < bi(t), @
Vie{l,..,N}, le{l,.., 4}, t €0, tf].
Inter-Robot Collision Avoidance Constraints. To avoid
collisions, robot footprints should never intersect. In our
framework, we apply the collision avoidance constraints as
represented in [15], which check that each vertex of a robot’s

footprint lies outside the footprints of the other robots.

Size Safety Constraint and Topological Safety Constraint.
During transportation, the robot formation must cooperate to
support a deformable sheet. The sheet is of finite length and
the distance between any two robots must not exceed this
length. Therefore, we constrain the distance between each
robot and its neighbours as follows:

1Pi(t) = Py (B)ll2 — " <0, VE € [0, tf],  (5)

where [["** is the maximum allowable distance between
robot i and N (%) (see Fig. 2(a)). As discussed in Sec. IIL, the
topological ordering of the robots should remain fixed during
locomotion to prevent the sheet becoming twisted. For this,
we apply the topological safety constraints in [10], which
ensure that the signed distance from the robot to the lines
representing the non-neighboring net edges are non-negative.
Formally, given matrix B=[0 — 1, 1 0]:

B(pn) —pj)T
M(pi —p;) >0,
PNy — Pill2
Vie{l,2,...,N}Y:j#i,N(j) #4,
Vie{l,2,...,N}.

(6)
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Object Height Constraint. The object’s trajectory is highly
coupled to robot movement. In the 3D coordinate system in
Fig. 2(b), the connection between each robot and the object
can be taut or slack [22]. With this, there are multiple equi-
librium states for the object with different numbers of taut
cables. We compute the different equilibrium states of the
object by applying the forward kinematics function in [22]:

fre({pidity, {vitiy, z) = P, C SE(3).  (7)

Given the footprints for each robot and the fixed height of
the robot contact points with the sheet, we obtain the set of
equilibrium states P, under all possible combinations of taut
cables. This results in a set of corresponding object height
values z,, and = and y coordinates x, and y,, respectively.
Let O.,0ss be the set of obstacles which intersect with the
object in the 2D plane. To avoid collisions with the object, all
obstacles must be lower than iL-l—eh, where h = min(z, ), and
€y, 1s a safety margin. This process is summarized in Alg. 2.

Terminal Constraints. It is challenging for car-like robots
to precisely reach a target position. Therefore, to improve
smoothness at the end of the formation trajectory, we relax
the terminal constraints in (le) to ||p,(tf) — p5*"9¢ || < €,
where ple79¢t is the target position of the object and ¢,
is a distance threshold. The terminal state of the object is
approximated as the average of the robot terminal positions,
ie. po(ty) = vazl pi(ty). This assumes the object remains
near the geometric center of the sheet, which holds under
quasi-static object motion and an inelastic sheet.

B. Iterative Process

The initial guesses computed in Sec. 2 may be imperfect
as they lack information about the kinematic constraints of
the robots. Further, the complex height safety constraints in
Alg. 2 make (1) challenging to solve directly. To mitigate
these issues, we propose a two-layer iterative framework,
as illustrated in Alg. 1. In the inner loop (lines 13 to 20
of Alg. 1), we iteratively add formation constraints at any
timestep where the height constraint is violated:

Ipi(t) = Py (®)ll2 = € (t) 2 0, VE € [0, 8], (8)

where CH(t) is the minimum allowable distance between
adjacent robots at time ¢t. Whenever an object height violation
is detected, CH(t) is iteratively increased by &, starting
from an initial default distance dj (line 19). This raises the
sheet and consequently the object. If the maximum distance
between robots is reached (line 16) or any other constraints
are violated (lines 11 and 21), our planner fails and starts
again from the next initial guess. This process is repeated
until a feasible solution is found. Note that the loop in lines
4-23 can be executed in parallel to improve solution time as
each combination of paths is independent.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the efficacy of our
approach in simulation and on hardware. All simulations
are run on Ubuntu 20.04 with an Intel Core i9 processor @

3.2GHz and 16GB of RAM. All software is implemented
in C++ using the robot operating system (ROS) [23]. To
solve the OCP in (1), we use the explicit Runge-Kutta
method [24] to construct the nonlinear programming (NLP)
problem, ADOL-C [25] for automatic differentiation,
and the primal-dual interior-point solver IPOPT [26] to
solve the NLP. Experimental runs can be viewed in the
supplementary video®. All parameter settings are described
in the documentation for our open-source software release.

A. Simulation Experiment

1) Ablation Study: We conducted an ablation study to
demonstrate the benefits of the initial guesses in Sec. IV.
We compared our framework in Alg. 1 to a modified version,
where hybrid A* computes the initial guess in (1) without
identifying multiple homotopy classes. All experiments take
place in a maze environment with cuboid obstacles of heights
ranging from 0.4-0.8m, as shown in Fig. 4. We generated
100 problem instances with randomised initial and goal
configurations which are consistent across both methods. We
then evaluate the success rate (SR), object height (height),
task completion time (t7), and control efforts (c.) for both
methods, as shown in Table I. We also present the aver-
age/maximum formation similarity error €y and e’/'** used
in [27], which describes how much the formation adjusts its
shape. The version of our framework without an initial guess
can only identify a single homotopy class, which requires
significant deformation of the formation to maneuver through
the congested passage in Fig. 4(a). This results in greater
variation in the object height during transportation, and in
43 instances, the poor initial guess resulted in an infeasible
solution. In contrast, our method benefits from a more
comprehensive exploration of the solution space, achieving
a 100% success rate while also improving trajectory quality
and transportation stability (see Fig. 4(b)).

2) Comprehensive Analysis: We do not compare against
state-of-the-art methods as the algorithms proposed in [3]-
[8] only apply to omnidirectional robots, and the approaches
in [9], [10] lack the capability to navigate through obstacles.
To evaluate the robustness of our framework, we consider
object transportation in a more complex 60m x 60m envi-
ronment. We considered formations of three and four robots,
where each robot’s footprint is a 1m x 0.8m rectangle. The
initial and target positions of the formation center are set
to (—35, —35)m and (35, 35)m, respectively. We consider
problems with 20, 40, 60, 80, and 100 cuboid obstacles. For
each number of obstacles, we randomly generate 100 prob-
lem instances, where obstacles have dimensions 1.5 x 0.75m
or 2 x 1m, and the obstacle height is uniformly sampled in
the range 0.4-0.8m. For each instance, we record a failure
if a solution is not found within 60 seconds. We record the
success rate (SR), the planning time (the combined time for
initial guess generation and trajectory optimization), and the
average iterations for the outer and inner loops of Alg. 1.
We present the results in Table II.

2https://youtu.be/DvEniLKDaHO
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Fig. 4. The generated trajectories for the ablation study. (a) Without heuristic initial guess generation. (b) With heuristic initial guess generation.

TABLE I
FRAMEWORK PERFORMANCE WITH AND WITHOUT HEURISTIC INITIAL GUESS GENERATION.
Method SR € enaT height (m) ty(s) Ce
w\o Sec. IV | 57% 0.1647 4+ 0.0628 0.2992 + 0.1271 0.5168 £+ 0.4315 84.6118 + 13.0238 0.5468 £+ 0.3148
w Sec. IV [ 100% | 0.0644 £ 0.0135 | 0.1981 £ 0.0645 | 0.5913 £ 0.1385 | 78.1998 + 14.2406 | 0.2411 £+ 0.1374
TABLE II
FRAMEWORK PERFORMANCE AS THE NUMBER OF ROBOTS AND OBSTACLES INCREASE.
Obstacles SR Planning Time (s) Avg. Iterations | Obstacles SR Planning Time (s) Avg. Iterations
(3 robots) 1G TO O I ‘ (4 robots) 1G TO O (I)
20 99%  4.25 £2.41 4.39 + 5.54 1.04 (1.14) 20 97%  4.19+2.58 7.81 £10.57 1.08 (1.08)
40 94%  5.72 +2.98 7.43+6.94 1.49 (1.51) 40 86%  4.55+2.29 8.15 + 8.76 1.12 (1.05)
60 89%  T7.27+£2.09 12.27 £12.58 1.49 (1.51) 60 82% 5.56 £1.56 15.10 & 16.06 1.33 (1.11)
80 79%  8.26+£2.73 1259+ 11.15 1.41 (1.65) 80 66% 6.86 +1.97 16.16 +11.68 1.33 (1.09)
100 1%  9.74+2.25 16.46 £+ 13.65 1.55 (1.93) 100 57% 9.76 £2.71 18.22+£17.79 1.37 (1.37)

Initial configuration
-

Fig. 5. Example trajectories (orange) for a formation of 4 car-like robots.
The transported object is a blue sphere, and the pink and red areas indicate
obstacles. Yellow and green areas show the initial and target formation
configurations, respectively. White virtual cables are shown instead of a
sheet as they are simpler to visualize in Gazebo.

As the number of obstacles and robots increase, the
success rate decreases. This is because the increased envi-
ronment complexity reduces the feasible solution space, in-
creasing the difficulty of planning. Similarly, Alg. 1 requires
more outer iterations to explore different topologies, and
more inner iterations to impose the object height constraints.
Howeyver, the total number of iterations remains low due to
the quality of initial guesses generated in Sec. IV. In all
successful instances, our planner generates safe and feasible
collision-free trajectories. Fig. 5 shows example trajectories
in Gazebo for four car-like robots in a scenario with 100
obstacles. The object’s position is estimated by selecting
the lowest height equilibrium state obtained through forward
kinematics [22]. Our framework adjusts the formation to
adapt to the obstacles while ensuring safety.

B. Real-World Experiment

We also evaluated our framework in a real indoor scenario
with cuboid obstacles, as shown in Fig. 6. Due to robot
availability we used three Turtlebots (see Fig. 1), which are

Fig. 6. Three snapshots of three Turtlebots transporting an object with
trajectories overlaid, where the formation expands to cross an obstacle.

not car-like robots. We demonstrated the performance of our
framework on car-like robots in Sec. VI-A. Robot states are
obtained through ROS, and a closed loop controller adapted
from [28] tracks robot trajectories at 100Hz. We consider
three problem instances with different obstacle heights but
the same start and end points. Fig. 6 illustrates robot trajec-
tories for one problem instance, with snapshots taken at three
points along the trajectory. Here, the formation begins in its
default shape, expands to cross an obstacle, and then con-
tracts back to the smaller shape once the obstacle is cleared.

VII. CONCLUSION

In this paper, we proposed a motion planning frame-
work for collaborative object transportation using a team of
nonholonomic robots and a deformable sheet. Our iterative
two-stage framework synthesizes high quality trajectories
while ensuring completeness. We improve the efficiency
of our solver by decoupling object height constraints from
the optimization problem. The efficacy of our framework
has been validated in simulation and in the real world. In
future work, we will improve our framework to account for
dynamic obstacles such as humans.
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