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Abstract— Multi-robot formations have numerous applica-
tions, such as cooperative object transportation in smart ware-
houses. Here, robots must deliver objects in formation while
avoiding intra- and inter-formation collisions. This requires
solutions to multi-robot task assignment, formation generation,
rigid formation maintenance, and route planning. In this paper,
we present a cooperative multi-formation object transportation
system which explicitly handles inter-formation collisions. For
formation generation, we propose a distributed motion planning
approach which combines artificial potential field methods
and leader-follower based control. For formation planning,
we present a heuristic search-based algorithm which uses
convex segmentation techniques, and extend the minimum snap
method to synthesise smooth trajectories while maintaining
the formation. We also propose a variant of the dynamic
window approach to avoid collisions between formations. We
demonstrate the efficacy of our approach in simulation.

I. INTRODUCTION

A common approach for large object transportation in
robotics is to use multiple robots to collaboratively push,
cage, or grasp the objects [1]. This paper addresses coop-
erative transportation problems where multiple formations
carry objects on top of them (see Fig. 1), which we refer
to as multi-formation planning and coordination (MFPC).
Here, the formations are rigid, i.e. the formation remains un-
changed during transportation, which is necessary to balance
heavy loads. To solve MFPC, we must generate and maintain
effective formations until a goal location is reached while
avoiding collisions with other formations and obstacles.

In this paper, we decompose MFPC into several sub-
problems (see Fig. 2). For formation generation, we assign
robots to formations using the Hungarian algorithm [2]. We
then use an artificial potential field (APF) method for naviga-
tion towards each robot’s formation location. APF methods
are a common distributed approach for formation control [3],
but can become trapped in local minima, which prevents
robots from reaching their target positions. To address this,
we combine a wall-following strategy with consensus-based
APF for robust formation generation.

After formation generation, each formation should move
toward its destination while maintaining form and avoid-
ing collisions with other formations and obstacles; this is
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Fig. 1. Object transportation for multiple rigid formations.

the planning component of MFPC. For this, we employ a
consensus-based method [4], where robots follow a virtual
leader in the formation centre, and reach a consensus on
velocity to maintain form [5]. The virtual leader should
maintain the formation by guaranteeing a kinematically
feasible path for each follower. To achieve this, we present a
heuristic-based global path planner which computes optimal
plans under the formation and kinematic constraints. We then
synthesise smooth trajectories from the global path using
an extended minimum snap approach [6]. To avoid inter-
formation collisions, we propose a variant of the dynamic
window approach (DWA) [7]; this is the coordination com-
ponent of MFPC. Finally, we combine first-order consensus
control [8] and pure pursuit control [9] to track robot
trajectories and complete object transportation.

The main contribution of this work is a comprehen-
sive MFPC framework that integrates formation generation,
planning, and coordination techniques. We demonstrate the
performance of our MFPC system and the individual com-
ponents empirically in simulation.

II. RELATED WORK

Formation generation requires a team of robots to or-
ganise into a predefined shape [10]. Centralised approaches
to formation generation can attain high performance, but
scale exponentially in the number of robots, making them
intractable for realistic problems [11].

In [12], an APF-based consensus control method is pre-
sented to formulate coordination and control strategies be-
tween robots without considering avoiding obstacles. An im-
proved APF is proposed in [13] for path planning of a multi-
robot formation which efficiently avoids getting trapped
in local minima caused by obstacles but fails to address
deadlocks among robots reaching their goal positions. An
alternative decentralised approach is proposed in [14], which
requires only the relative positions of robots and obstacles
from each robot. This approach, however, does not guarantee20
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solution convergence. A template-based technique is used
in [15] where no experiments are provided regarding the
scalability issue. In our work, we ensure achieving formation
convergence, a deadlock-free and scalable solution by using
the Hungarian algorithm [2] for optimal task assignment and
the first-order consensus method for driving robots to their
goal positions [8].

Formation planning has leveraged the wealth of classical
AI search methods. For instance, in [16], a relaxed A∗

planner is employed to generate an optimal collision-free
global path over a map where obstacles are inflated by
a circle that covers the entire footprint of the formation.
However, such conservative approximations can result in a
loss of precision and, at times, failure to find a solution. In
this paper, we define the obstacle-free space without making
any approximations of the obstacles. Another example
includes constrained optimisation for non-rigid formation
planning [17] in a dynamic environment, an approach
which cannot be applied directly to the type of rigid MFPC
considered in this paper. An alternative approach is to use
sampling-based methods such as rapidly-exploring random
trees [18] or probabilistic roadmaps [19] that consider the
geometric constraints of the formation. However, these ap-
proaches rely on sampling a large number of configurations
to find a path which often suffers from abrupt variations in
direction. To alleviate this problem, we use heuristic search
to reduce the number of sampling configurations and abrupt
changes in direction. Further, we apply a modified minimum
snap method [6] to produce a feasible smooth trajectory.

For rigid object transportation, formations should be
maintained during locomotion. For instance, a leader-
follower strategy combined with APF is used in [20]. The
leader robot determines its navigation path through APF,
and the other robots in the group follow the leader to
maintain the formation using distance-angle (l−φ ) control.
However, dynamic obstacles are not considered. In [21], the
authors demonstrate a hierarchical quadratic programming
approach, such that the a priori unknown obstacles can
be detected and avoided at runtime. However, due to the
lack of a global planner to generate a set of waypoints,
the control may run the risk of falling into local minima.
In [22], an improved A* algorithm is adopted to generate
optimal global paths and a multiple sub-target APF is
proposed for local path planning of the formation. In this
approach, when the formation avoids dynamic obstacles, the
generated trajectory toward the local subgoal may not be
executable for the robot. In our work, we benefit from the
smooth and executable global trajectories generated by the
formation planner. Further, we extend the dynamic window
approach (DWA) [7] by introducing formation prioritization
to achieve collision avoidance between formations while
ensuring that the robot motion constraints are not violated.

III. PRELIMINARIES

We begin by defining our assumptions over the workspace,
robots, and formations.

Workspace. Let W ⊂R2 be a 2D workspace which contains

Fig. 2. The proposed problem decomposition for MFPC.

Fig. 3. Linear, rectangular, and triangular formations consisting of several
robots (in red) and an object (in black). Each robot i is placed with its state
xril relative to the jth formation’s centroid state xctr j .

a set of static obstacles O ⊂W , and let F = W \O denote
the obstacle-free workspace.

Robots. Consider a team of homogeneous rectangular robots
R = {1, ..., |R|}, where |R| is the cardinality of R (see Fig. 3).
Let xi(t) = ⟨xi(t),yi(t),θi(t)⟩ be the state of robot i ∈ R at
time t, where xi(t),yi(t)∈R denote robot i’s position at time
t, and θi(t) ∈ [−π,π) denotes its orientation. We assume all
robots are holonomic, and use a unicycle kinematic model:

ẋi(t) =
d
dt

xi(t)
yi(t)
θi(t)

=

vi(t) · cosθi(t)
vi(t) · sinθi(t)

ωi(t)


i ∈ R, t ∈ [0, t fi ],

(1)

where vi(t) and ωi(t) denote the velocity and angular velocity
applied at time t respectively, and t fi is the finite horizon for
robot i. At each time step, we assume robots can observe the
state of all other robots and obstacles within sensing range
d0 ∈ R≥0.

Formations. In this paper, we consider formations in straight
lines, rectangles, and triangles (see Fig. 3). We write
z j =< xctr j,xr j1, ...xr jk > to denote the configuration of the
jth formation, formed of k robots, where xctr j denotes the
formation’s centroid state, and xr jl is the relative state of the
lth robot with respect to xctr j.

IV. FORMATION GENERATION

In this section, we present a distributed approach for
formation generation which combines APFs with consensus-
based leader-follower control and a wall-following strategy
to avoid local minima and unreachable targets. The first sub-
problem for formation generation is to allocate each robot i to
a formation location gi ∈G, where gi corresponds to a corner
of a formation (see Fig. 3). For this, we use the optimal Hun-
garian algorithm [2] with a Euclidian distance cost function.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 11,2025 at 21:54:41 UTC from IEEE Xplore.  Restrictions apply. 



To drive robot i towards gi while avoiding obsta-
cles, we employ a modified APF approach [13]. Let
Fg(li(t)) be the gravitational force towards the goal, where
li(t) =< xi(t),yi(t)> denotes the position of robot i at time
t, and let Fr(li(t)) be the resultant repulsive force from
the obstacles and other robots within robot i’s sensing
range. Under the APF, robot i’s control input is given by
ui(t) = Fg(li(t))+Fr(li(t)).

In cluttered environments, robots may become trapped
in local minima and oscillate around their current location
indefinitely. Local minima may be detected by observing a
robot’s state or the forces applied to a robot. Formally, a
local minima occurs if either of the following hold at time t:

|Fg(li(t))+Fr(li(t))|< ε or |li(t− τ)− li(t)|< ρs, (2)

where ε ∈ R>0 and ρ ∈ [0,1] are small thresholds, and s
is the distance travelled by robot i in the past τ timesteps.
The first inequality holds if the gravitational and repulsive
forces are approximately zero. The second inequality holds
if the robot’s position has changed less than the distance it
has travelled. When a local minima is detected, we remove
the gravitational and repuslive forces and drive the robot
along the wall of the nearest obstacle towards the formation
location. The gravitational and repulsive forces are reapplied
once the inequalities in (2) are violated.

Local minima may also occur due to robot deadlocks.
For example, a robot may be blocked from its formation
location by the repulsive forces of robots who have already
reached theirs. For this, we combine first-order consensus [8]
and leader-follower control [23]. Here, the blocked robot
becomes the leader, and the other robots become followers.
First-order consensus control ensures the robots satisfy the
relative position relationships in the formation and converge
to velocity consistency, thus driving them toward the target
formation. Let ai j = 1 if robot i can communicate with robot
j, and 0 otherwise. Then, let Ni = { j | ai j = 1}, i.e. the robots
that robot i can directly communicate with. Under first-order
consensus control [8], the control input of the leader robot i
is set to be:

ui(t) = Fg(li(t))+Fr(li(t))+ ∑
f∈Ni

wi f (t)(xi f (t)− ri f ), (3)

where ri f is the required relative distance between the leader
i and follower f , and xi f is the state of the follower f
with respect to the leader i. The weight wi f (t) is given
by wi f (t) = 2− e−(xi f (t)−ri f )

2
. Similarly, the control input for

follower f is as follows, where ui(t) is the control input of
the leader:

u f (t) = ui(t)+Fr(l f (t))+ ∑
f ′∈N j

w f f ′(x f f ′(t)− r f f ′). (4)

V. FORMATION PLANNING

In this section, we synthesise a discrete global path T for
the centre of each formation which minimises the distance
from its initial configuration zs to the goal configuration zg.
For this, we incrementally construct a graph G = (V,E) over
the workspace, where each node v ∈V lies inside a convex

polygon P, and edges (v,v′) ∈ E connect nodes. We begin
with a heuristic approach for partitioning the workspace into
convex polygons (Subsection V-A), which we then use for
global path planning (Subsection V-B).

A. Heuristic Workspace Decomposition

The obstacle-free workspace F can be partitioned into a
set of convex polygons P which maintain the formation’s
geometric constraints, defined as:

Anvm ≤ bn,∀n = 1, ...,N,m = 1, ...,M, (5)

where An and bm are the parameters of the separated hy-
perplanes, N is the number of sides of the polygon, and vm
represents the outer vertices of the formation’s convex hull.
In Alg. 1, we show how to generate the next convex polygon
P in a partition, given the existing polygons P= {P1, ...,PK}.
For this, we use IRIS [24], which given an initial seed point
alternately solves two convex optimisations: (1) finding a set
of hyperplanes that separate an ellipse e from the obstacles
O via quadratic optimization, and (2) finding the largest
ellipse within the polygon P via a semi-definite program.
Each convex polygon P has a corresponding ellipse e; we
denote the set of existing ellipses as E= {e1, ...,eK}.

For efficient global planning (see Subsection V-B), poly-
gon construction should be guided towards the goal. There-
fore, in Alg. 1, we introduce a heuristic strategy for sampling
new IRIS seed points. First, we discretise the workspace into
cells, and assign a cost to each cell in a matrix B (lines 2-6).
Cells in obstacles or existing ellipses have cost −∞, and all
other cells have cost:

Cost(c) =
1
K

K

∑
k=1
||c− ek||2− γ

(1−ζ )||c−g||2. (6)

Here, γ ∈ R>0 is a weight parameter, ζ ∈ [0,1] is the
proportion of the map covered by obstacles and ellipses, and
g is the cell containing goal configuration zg. Intuitively, (6)
assigns high cost to cells which are further from existing
polygons and closer to the goal. However, the second term
in (6) decays as the explored area increases, which admits
backtracking to explore regions further from the goal. We
select the cell c∗ with maximum cost in B as the new seed
point for IRIS (lines 9-10), pushing the polygons towards the
goal. After running IRIS, we test whether the new polygon
Pnew and ellipse enew should be accepted into the partition
(lines 11-16). Polygon Pnew is rejected if the seed point c∗ is
less than distance α from a previous seed point, or if enew
is less than distance β from an existing ellipse ek ∈ E. If
Pnew is rejected, Alg. 1 must be re-run. Thresholds α and β

decay as the workspace is explored to relax the conditions
for polygon acceptance, as the distance to the nearest cell or
ellipse will decrease as more polygons are added.

B. Global Path Planning

Using Alg. 1, we incrementally construct a graph
G = (V,E) by adding convex polygons to the workspace until
a path exists between zs and zg, where nodes are added for
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Algorithm 1: Heuristic IRIS
Input: Obstacle set O, existing polygons P and

ellipses E, previously selected cells C
Output: Pnew

1 Pnew←∅
2 foreach c ∈W do
3 if c ∈ O or c ∈ E then
4 B{c}←−∞

5 else
6 B{c}← Cost(c)
7

8 while Pnew =∅ do
9 c∗← argmax

c∈W
B

10 {Pnew,enew}← IRIS(c∗)
11 foreach c ∈ C, ek ∈ E do
12 if ∥c∗− c∥< α or ∥enew− ek∥< β then
13 foreach c ∈ enew do
14 B{c}←−∞

15 {α, β}← UpdateThreshold(α, β , B)
16 Pnew←∅
17

18 P← P∪Pnew, E← E∪ enew, C← C∪ c∗

19 return Pnew

each polygon and polygon intersection. We then synthesise
a path T over graph G. In detail, we do the following:

1) Initialise Graph: Graph G is initialised with nodes
at zs and zg. Convex polygons are generated from
each of these points using IRIS [24]. If these polygons
intersect, zs, zg, and an intersection point are connected
as in step 4.

2) Test for Path: If a path exists from zs to zg in G go to
step 5, else go to step 3. If the total area covered by
polygons exceeds a threshold, terminate without a plan.

3) Add New Polygon: Generate a new polygon Pnew
using Alg. 1. Then, add a node znew to G at the
location within Pnew closest to the goal zg. Formally:

znew = argmin
z∈Pnew

(z− zg)
2. (7)

4) Add Intersection Nodes and Edges: Find all existing
polygons Pk ∈ P who intersect with Pnew. Given
the nodes znew and zk computed from Pnew and Pk
respectively using (7), find the configuration zinter
which minimises the perpendicular distance from the
straight line between znew and zk. Formally:

zinter = argmin
z∈Pnew∩Pk

dis(z, line(znew,zk))
2. (8)

Next, add the node zinter and edges (znew,zinter) and
(zinter,zk) to G. By optimising zinter using (8), we
minimise edge length. Following this, return to step 2.

5) Find Shortest Path: Synthesise the shortest path
from zs to zg on graph G using A* search [25].

We demonstrate our global planner in Fig. 4. In Fig. 4(a),
a triangular formation must reach the top right of the map.
Fig. 4(b) shows the convex polygons generated from the
initial and goal configurations. These regions do not intersect,
and so we use Alg. 1 to add a new polygon (see Fig. 4(c)).
The intersections between these three polygons admit a graph
which connects the initial configuration to the goal configu-
ration, and so a global path can be found (see Fig. 4(d)).

VI. TRAJECTORY GENERATION AND FORMATION
CONTROL

The global path T computed in Subsection V-B contains
sharp turns which cannot be executed smoothly by a robot.
To mitigate this, we now present techniques for trajectory
optimisation, trajectory tracking, and local motion planning.

A. Trajectory Optimization

To synthesise continuous collision-free trajectories from
the global path T which respect robot kinematic constraints,
we consider an extended minimum snap approach [6]. Min-
imum snap cannot be applied directly to formations, as the
geometric constraints of the formation are ignored, which
may cause collisions (see Fig. 4(e)). To avoid collisions,
we apply the inequality constraints in (5), and minimise the
deviation from global path T .

In minimum snap, trajectories are represented in S seg-
ments. The rth trajectory segment is represented as an order
q polynomial over the current time t:

pr(t) = [1, t, t2, ..., tq] ·p, t ∈ [0, t f ], (9)

where p is the coefficient matrix of the trajectory polynomial.
Here, pr(t) and ṗr(t) represent the position and orientation
of the formation’s centroid, respectively. The time informa-
tion for each segment is computed assuming a trapezoidal
velocity-time profile.

To adapt minimum snap to formations, we first include the
inequality constraints in (5) during optimisation. This ensures
the formation remains inside a convex polygon generated by
IRIS [24], which guarantees collision avoidance. Second, we
introduce an error term between the optimised trajectory and
the trajectory corresponding to global path T , where T can
be segmented based on the intermediate nodes in the path.
The rth segment of the global path trajectory por , composed
of endpoints ptr−1 and ptr can be represented as:

por = [ptr −
ptr − ptr−1

tr− tr−1
tr,

ptr − ptr−1

tr− tr−1
,0,0, ...,0]. (10)

With this, the quadratic program for our extended minimum
snap approach can be written as:

min
p

S

∑
r=1

∫ tr

tr−1

(p(4)r (t))2 +λ (pr(t)− por(t))
2 dt s.t (5), (11)

where λ is a weighting term. An example trajectory opti-
mised with our approach is shown in Fig. 4(f).
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(a) The initial (bottom left) and goal (top
right) configurations of the formation.

(b) The convex regions corresponding to the
initial and goal configurations.

(c) The optimal seed point (black star) is
found using Alg. 1 and a new convex region
is generated.

(d) The optimal configuration in each con-
vex region and intersection form a graph
from which a global path is found (pink).

(e) An unsafe trajectory synthesised from
the global path using [6].

(f) A safe trajectory synthesised from the
global path using our adapted minimum snap
approach.

Fig. 4. An illustrative example of global path planning and trajectory optimization for a triangular formation.

(a) Formations A and B are on
track to collide at point C.

(b) Formation B treats formation
A as an obstacle and computes its
convex region.

(c) Formation B backs off to pre-
vent a collision and computes the
updated convex region.

(d) Formation A is eventually clear
of B, and B returns to trajectory
tracking.

Fig. 5. An illustrative example of our prioritised DWA for local motion planning and coordination. Solid and dashed lines represent robot trajectories.

B. Consensus-based Trajectory Tracking

To track the global trajectory, we combine pure pursuit
control [9] with a consensus-based approach [4], where the
formation centre is the virtual leader. For each robot, we
use first-order consensus control to maintain the formation.
Similar to (4), the control input for the ith follower of the
jth formation at time t is given by:

ui(t) = u(xctr j)+Fr(li(t))+ ∑
f∈{1,...,k}

wi f (xi f (t)− ri f ), (12)

where xctr j is the state of the virtual leader, u(xctr j) is the
virtual leader’s control input, and there are k robots in the
formation.

C. Local Motion Planning Using DWA

When one formation senses another, it should deviate from
its trajectory to prevent collisions. For this, we employ a
prioritised DWA, where formations with longer trajectories
have higher priority [26]. This is an ad-hoc solution for the
coordination component of MFPC (see Fig. 2). Formation j
begins collision avoidance behaviours upon sensing a higher
priority formation. First, formation j computes the convex
region around its virtual leader given the other formations
and surrounding obstacles. We then sample a set of motion

primitives m using DWA [7], i.e. velocities and angular
velocities, which respect kinematic constraints and keep the
formation within its convex region. The highest value motion
primitive according to a function E is then executed, where
E is defined as in [7]:

E(m) = w1 ·Dir+w2 ·Dis+w3 ·Vel. (13)

Here, Dir is the absolute directional change between the cur-
rent velocity and the velocity in m, Dis is the average distance
between formation j and any higher-priority formations after
executing m, and Vel is the magnitude of the velocity in
m. Formations execute collision avoidance primitives until
higher priority formations are out of range, and then switch
back to trajectory tracking. This ad-hoc coordination ap-
proach does not guarantee collision avoidance, as formations
may be occluded, but collisions are reduced, as shown in
Sec VII. We demonstrate our prioritised DWA in Fig. 5. In
Fig. 5(a), formations A and B are on track to collide, where A
has higher priority. Formation B computes its convex region
(see Fig. 5(b)), and backs off to prevent a collision (see
Fig. 5(c)). This is repeated until formation B is clear of A,
and switches back to trajectory tracking (see Fig. 5(d)).
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Fig. 6. Formation generation performance as the number of robots increase.

VII. EXPERIMENTS

In this section, we demonstrate the efficacy of our ap-
proach in simulation. All experiments are implemented in
MATLAB on an Intel i5 processor at 2.3GHz with 16GB of
RAM. We consider 3 10×10m environments with randomly
generated quadrilateral obstacles which cover 20%, 40%, and
60% of the environment respectively. All robots are 0.3m
squares, where the velocity, angular velocity, acceleration,
and angular acceleration are constrained within ±0.3m/s,
±0.35rad/s, ±0.2m/s2, and ±0.8rad/s2 respectively. Forma-
tions may be linear, triangular, or rectangular (see Fig. 3).

A. Formation Generation Performance

First, we evaluate formation generation performance as
the number of robots increase. For each environment and
number of robots, we generate 30 random problem instances,
i.e. start and goal locations. We evaluate the makespan, i.e.
the time for the last robot to reach its formation location. We
present our results in Fig. 6, which also shows the formation
configuration for each number of robots, e.g. 8(2∗2+1∗4)
represents 8 robots forming 2 straight lines and 1 rectangle.

In Fig. 6, the makespan increases as the environment
becomes more occluded, as robots must take longer routes,
and because robot coordination is harder in tighter spaces.
However, the makespan increases slowly with the number of
robots, demonstrating how our approach effectively coordi-
nates robots towards their formation locations. In all exper-
imental runs, no robots became trapped in local minima.

B. Formation Planning Performance

Next, we evaluate our global formation planner against a
variant which uses IRIS [24] with random seed points. In
each environment, we randomly generate 30 formation start
and goal locations for each of the three formation shapes,
where start and goal locations are at least 5m apart. We
combine the results for all formation shapes and present
them in Fig. 7, where the area threshold in step 2 in
Subsection V-B is set to 80%. Our planner consistently
synthesises paths quicker than the random IRIS planner,
where the gap increases with the number of obstacles. Our
approach also synthesises shorter paths using Alg. 1 and the
optimal configurations within each polygon and intersection.

(a) Computation time results. (b) Path length results.

Fig. 7. Global path planning performance as occupancy increases.

Fig. 8. The average trajectory deviation error of our approach against
minimum snap [6].

We also demonstrate the efficacy of our extended min-
imum snap approach in Section VI-A. Using the global
paths synthesised in the previous experiment, we run our
trajectory optimisation method and the original minimum
snap algorithm in [6]. For each run, we record the average
trajectory deviation error, and present the results in Fig. 8.
Our approach synthesises trajectories which are consistently
easier for robots to track. We also recorded the total colli-
sions in each trajectory: our approach produced collision-
free trajectories across all runs, whereas minimum snap
trajectories intersected with obstacles at least 4.6 times on
average. This is because our approach is guaranteed to satisfy
the formation’s geometric constraints.

C. Formation Coordination Performance

We now evaluate our prioritised DWA for local motion
planning and coordination. We generate 30 random 2-5
formation problems in the 60% occluded environment, and
evaluate the number of inter-formation collisions with and
without our approach. For each problem instance, the initial
and goal formation positions are on either side of a circle
of radius 5m centred on the map. We present our results
in Table I. Our prioritised DWA resolves all conflicts for
2-3 formations, but not for 4-5 formations. This is because
there may not exist feasible collision-free controls for lower
priority robots in narrow regions of the environment. Despite
this, our approach still reduces the total number of collisions.

VIII. CONCLUSION

In this paper, we proposed a framework for MFPC
that outperforms state-of-the-art techniques. For formation
generation, we extended APF approaches to avoid local
minima. For formation planning, we applied a heuristic
sampling strategy to improve path quality and computation
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TABLE I
NUMBER OF INTER-FORMATION COLLISIONS WITH AND WITHOUT OUR

PRIORITISED DWA.

Number of Formations No Prioritised DWA With Prioritised DWA
2 (1∗3+1∗4) 0.62±0.48 0
3 (2∗3+1∗4) 1.56±0.93 0
4 (2∗3+2∗4) 1.94±0.89 0.61±0.44

5 (1∗2+2∗3+2∗4) 2.47±1.16 0.92±0.69

time. Finally, for formation coordination, we introduced
a prioritised DWA to reduce inter-formation collisions.
In future work, we will demonstrate the efficacy of our
framework on real robots, explore coordination methods that
guarantee inter-formation collision avoidance, and capture
the effects of uncertainty on robot execution. Further, we
will consider formations of real nonholonomic robots in
transport environments shared with humans.
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