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Multi-robot formations have numerous applications, such as cooperative object transportation in intelligent
warehouses. In this context, robots are tasked with delivering objects in formation while avoiding intra-
and inter-formation collisions. This necessitates the development of solutions for multi-robot task allocation,
formation generation, rigid formation route planning, and formation coordination. In this paper, we present
a cooperative formation object transportation system for heterogeneous multi-robot systems which captures
robot dynamics and avoids inter-formation collisions. Accounting for heterogeneous formations expands the
applicability of the proposed robotic transport system. For formation generation, we propose an approach based
on conflict-based search, which integrates high-level path planning with low-level trajectory optimisation.
For heterogeneous formation planning, we present a two-stage iterative trajectory optimisation framework
which adheres to the kinematic constraints of our heterogeneous multi-robot system while retaining formation
rigidity. For multi-formation coordination, we use a loosely-coupled algorithm which can guarantee collision-
free and deadlock-free formation navigation under minimal assumptions. We demonstrate the efficacy of our

approach in simulation.

1. Introduction

A common approach for large object transportation in robotics
involves the collective use of multiple robots to collaboratively push,
cage, or grasp the objects [1]. This paper addresses cooperative trans-
portation problems where multiple robot formations carry objects on
top of them, as shown in Fig. 1. Unlike most cases where the ob-
ject is rigidly attached to the mobile robots [2-6], our transportation
method prevents the object from slipping using the friction between
the surface of the object and the surface of the robots [7]. To ex-
pand the applicability of this robotic transportation system, our paper
proposes a solution that accommodates heterogeneous robots, including
those with car-like or differential drive kinodynamics. Heterogeneous
robots improve the flexibility of collaborative transportation through
the use of robots with different load capacities, sizes, and costs. To
transport objects, formations must remain rigid to prevent the objects
from falling, meaning the formation shape must remain as consistent
as possible during execution [8].

Collaborative multi-robot object transportation has been widely
studied from a control perspective [6,8-10]. Many studies have anal-
ysed the interaction between robots and objects from a dynamic per-
spective. These include coordination and consensus on the manip-
ulation forces and torques that robots need to apply to the object
during transportation [4,5,11], estimating the contact point positions
of the robots and the inertia parameters of unknown objects [2], and
the impact of load manipulation on robot wheels [3]. However, this
paper focuses on the kinematic aspects of rigid formation planning and
coordination without considering dynamic effects, similar to [8,9,12—
15]. Many of these studies assume a single formation which is already
formed at the start of the task. This work focuses on the more com-
prehensive, complex problem of coordinating multiple heterogeneous
formations for object transportation. We refer to this problem as Hetero-
geneous Multi-formation Planning and Coordination (H-MFPC). A solution
to H-MFPC requires generating and maintaining effective formations
until a goal location is reached while avoiding collisions with other
formations and obstacles.
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Fig. 1. Object transportation for multiple rigid formations of heterogeneous robots.

Solving the complete H-MFPC problem in a unified way is com-
putationally challenging. Therefore, we propose decomposing H-MFPC
into several major sub-problems: formation generation, planning, and
coordination. We illustrate this decomposition alongside our proposed
framework in Fig. 2. Though we solve each sub-problem indepen-
dently, their solutions are highly interrelated. For instance, our multi-
formation coordination solution heavily relies on the synthesised for-
mation plans. Further, our unified representation of obstacle-free space
admits a systematic approach to handling obstacle avoidance con-
straints in each sub-problem.

For formation generation, we sequentially assign different classes of
robots to formations using the Hungarian algorithm [16]. To guide each
robot to its formation location, we combine conflict-based search for
multi-agent path finding [17] with an improved trajectory optimisation
method which leverages the constraint splitting mechanism in [18].
Following formation generation, each formation must navigate towards
its destination while maintaining rigidity and avoiding collisions with
other formations and obstacles; this is the planning component of
the H-MFPC. For this, we introduce an iterative two-stage trajectory
optimisation method. In the first stage, one robot is assigned as a
leader, and an initial cost-minimising trajectory is synthesised which
ensures no robots in the formation collide with static obstacles. The
second stage involves synthesising follower trajectories which maintain
rigidity. These stages are repeated iteratively until suitable trajectories
for the followers are determined which satisfy all kinematic constraints
while minimising the cost for the formation. To avoid inter-formation
collisions, we adopt a loosely coupled multi-formation coordination
algorithm based on [19]; this represents the coordination component of
H-MFPC. Finally, we use Lyapunov-based trajectory tracking controllers
to follow the robot trajectories and complete object transportation [20,
21].

To the best of our knowledge, ours is the first work to investigate
planning and coordination for object transportation using multiple
formations of heterogeneous robots. We address the H-MFPC prob-
lem through a decoupled framework which solves each sub-problem
through state-of-the-art methods. This paper extends our prior work
presented in [22], which only considered homogeneous formations.
Addressing heterogeneity introduces new challenges, and requires us
to modify the solutions for three major sub-problems compared to our
earlier work. The main contributions of this work are summarised as
follows:

+ A comprehensive H-MFPC framework which integrates formation
generation, planning, and coordination techniques for heteroge-
neous formations.

» An efficient formation generation approach for heterogeneous
multi-robot systems which synthesises collision-free and kinemat-
ically feasible trajectories in unstructured environments.

* A cost-optimal formation planning method that maintains rigidity
for heterogeneous formations.
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+ A loosely-coupled multi-formation coordination algorithm for en-
suring deadlock-free and collision-free navigation among forma-
tions.

We demonstrate the efficacy of our H-MFPC framework through ex-
tensive experiments in simulation. A video demonstrating our proposed
framework can be found at https://youtu.be/A_S-eOmkLGY.

2. Related work

To the best of our knowledge, no works have attempted to simul-
taneously address the sub-problems illustrated in Fig. 2. In this sec-
tion, we discuss previous work addressing these sub-problems, namely
formation generation, formation planning, and formation coordination.

2.1. Formation generation

Formation generation requires a team of robots to organise into a
predefined configuration [23], a process synonymous with multi-robot
trajectory planning (MRTP). The MRTP problem involves planning
safe and efficient paths for multiple robots in a given environment,
enabling them to move from their starting positions to their target
destinations while avoiding collisions with each other and obstacles.
Current literature on solving the MRTP problem can be divided into
coupled and decoupled methods. When considering nonlinear robot
dynamics, MRTP can only be formulated as a non-convex nonlinear pro-
gramming (NLP) problem, intensifying its complexity in obstacle-dense
environments. To account for this complexity, a common approach is to
use a centralised two-stage method that encompasses multi-agent path
finding (MAPF) and trajectory optimisation [18,24,25]. For instance,
in [24], a conflict-based search (CBS) solver is used to generate refer-
ence paths for each robot during optimisation. Model predictive control
(MPC) is then applied to produce executable trajectories based on these
paths. However, deviations from these predetermined paths may result
in potential collisions among robots. Another example involves the
introduction of conflict-based MPC (CB-MPC), which resolves conflicts
similarly to CBS [18]. CBS is then integrated with MPC as the low-
level planner to devise collision-free and executable motion plans for
multiple robots in a receding horizon fashion. CB-MPC treats each
robot as a circle for collision avoidance purposes, which is conservative
and may result in failure when robots are highly concentrated around
the target configuration. Conversely, in this paper, we consider the
geometric shapes of the robots, which enables the usage of the full
potential solution space. Additionally, heuristic terms are introduced to
incrementally resolve conflicts among robots, ensuring scalability and
robustness.

To enhance computational efficiency during MRTP, Li et al. [25]
propose a prioritised and sequential trajectory optimisation method
based on grouping strategies. In this method, lower-priority robots
must avoid the trajectories of higher-priority robots that have already
planned. This approach exhibits robust performance in environments
with fewer constraints, but in densely constrained settings, inappropri-
ate prioritisation may result in deadlocks or collisions. Wen et al. [26]
present a car-like CBS (CL-CBS) approach that explicitly captures the
non-holonomic kinematics of the agent. They introduce a conflict tree
to record collisions arising from agent shapes, and propose a spatiotem-
poral hybrid A* algorithm to mitigate those collisions. However, the
trajectories generated by CL-CBS do not ensure curvature continuity.
Additionally, Ouyang et al. [27] propose a two-stage approach in which
a feasible homotopy class is identified from which a locally optimal
solution is found. These latter two methods are tailored specifically for
car-like robots.

MRTP can also be solved in a distributed manner. Reactive-based
methods, such as artificial potential field methods [22] and optimal re-
ciprocal collision avoidance [28] can avoid local collisions during nav-
igation. These techniques are often computationally efficient and fairly
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Fig. 2. The proposed problem decomposition for H-MFPC.

Table 1

A comparison of state-of-the-art formation planning techniques.
Planner Robot type Heterogeneous Rigid Global planning  Avoids inflation of formation footprint or obstacles
[6] Holonomic X X v v
[8] Diff-drive X v v X
[9] Diff-drive X v X X
[10] Car-like X X v v
[12] Holonomic X v v v
[13] Holonomic X v v X
[14] Car-like X v X X
[15] Car-like X v X v
[30] Diff-drive X X X v
[31] Holonomic X X X X
Our planner Car-like & Diff-drive v v v v

scalable. However, due to their inability to predict future robot be-
haviour, they fail to synthesise high-quality trajectories and deadlock-
free operation in densely populated environments. Further, in [29] a
distributed trajectory planning method is proposed which leverages dis-
tributed model predictive control (DMPC). This approach enables each
robot to execute real-time trajectory planning and resolve on-demand
conflicts. Though efficient and scalable, it does not assure the absence
of deadlocks, and the resulting trajectories are often suboptimal.

2.2. Formation planning

Many formation planning techniques leverage classical Al search
methods. In [8], relaxed A* [32] is used to build a spline-based for-
mation planner, where obstacles are inflated by a circle which encom-
passes the formation’s footprint. Such inflation is overly conservative,
restricting the feasible solution space and causing planning to fail in the
worst case. In this paper, we do not inflate or approximate obstacles, as
the formation’s convex hull is constrained to the obstacle-free convex
region. Constraint optimisation techniques can be used to plan for non-
rigid formations to allow for flexible obstacle avoidance [6,31]. These
techniques assume holonomic robots however, making them unsuitable
for the heterogeneous non-holonomic robots considered in this paper.
Formation planning can also be addressed through sampling-based
methods. In [12], an improved rapidly-exploring random tree (RRT)
method is presented for rigid formation planning which explicitly con-
siders the geometric constraints of the formation. Alternatively, in [13],
a graph search-based global path planner is presented that can handle
rigid or flexible formations of holonomic robots in complex static
environments with dense obstacles. These methods are probabilistically
complete, but do not consider trajectory optimisation. This may result
in trajectories with discontinuities which cannot be accurately followed
by non-holonomic robots. Formation planning has also been tackled
through deep reinforcement learning. In [30], each robot learns how
to independently adjust its position in the formation to avoid obstacles.

This approach can scale to different numbers of robots, however it is
challenging to obtain sufficient training data.

The formation planning problem has been formalised in terms of
optimal control. In [14], a distributed adaptive trajectory optimisa-
tion method for car-like robots with state and input constraints is
presented, but does not explicitly consider formation rigidity. A hi-
erarchical quadratic programming approach is presented in [9]. This
method can detect and avoid a priori unknown obstacles during exe-
cution while maintaining a high level of rigidity. However, the lack
of a global planner may lead to local minima, reducing performance.
In [15], the formation leader’s information is used to compute the
expected trajectories of car-like follower robots. These trajectories are
then tracked through MPC. Though the leader’s trajectory is guaran-
teed to be collision-free, this does not hold for the followers, where
collision avoidance is not explicitly considered. In [10], nets are used
to transport objects in formations of car-like robots. This allows for
object transportation in unstructured environments. Under this net-
based approach, formations are not rigid, making it unsuitable for the
H-MFPC problem tackled in this paper.

In Table 1, we summarise the state-of-the-art in formation plan-
ning. Here, we compare methods based on the robots in the forma-
tion, whether formations are rigid, whether a global planner is used,
and whether the formation footprint or obstacles are inflated during
planning.

2.3. Formation coordination

In this paper, we explicitly address collision avoidance among mul-
tiple formations, which has received little attention in the literature.
Multi-formation coordination is similar to the multi-robot multi-target
motion planning problem. However, multi-formation coordination so-
lutions must consider the constraints of the formation in addition to
the kinematic, dynamic, and collision avoidance constraints imposed
on each robot. Formation constraints significantly reduce the feasible
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Table 2
Nomenclature.
w 2D workspace.
o A set of static obstacles.
Wree Obstacle-free workspace.
C, A seed point used for IRIS.
A, b, A set of hyperparameters used to describe a convex region.
C, A continuous point inside a convex polygon.
R A team of heterogeneous robots.
0, The ith robot’s configuration space.
R; Robot i’s footprint.
1 The dynamics model for robot i.
e A set of kinematic constraints for robot i.
Q[f ree The set of obstacle-free configurations for robot i.
q;(t) Robot i’s configuration at time 1.
z;(1) The state for the robot i at time .
F A set of heterogeneous formations.
z, The eth formation.
d; The relative distance of the ith robot to the formation centre.
refk The kth waypoint of the discrete reference path for robot i.
SC; The corresponding safe corridors for the robot i’s trajectory.
uf‘J The four vertices of robot i.
T/ The initial trajectory for robot i.
V,. A set of vertices representing formation e’s footprint.
SC, The safe corridors for formation e.
T, The trajectory for robot i in Section 5.
P The sequence of configurations along robot i’s trajectory.
£(p;) The spatial envelope for robot i.
c An arc length used to parameterise p,.
F,(p;(0)) The footprint of the formation led by robot i.
c The critical section between two formations.
1€ The instant immediately before a formation enters C.
u¢ The instant immediately after a formation leaves C.
my(1) The precedence constraint applied to robot i at time 7.
T The set of precedence constraints active at time 7.

motion of each robot, increasing the difficulty of inter-formation col-
lision avoidance. A neighbour-based multi-formation control protocol
is proposed for inter-formation collision avoidance in obstacle-free
environments in [33]. However, its heavy reliance on inter-formation
communication topology compromises scalability. In [34], an improved
version of the optimal reciprocal collision avoidance algorithm (ORCA)
is presented for non-holonomic robot formations which aims to avoid
collisions with other formations and obstacles. However, the myopic
nature of this method results in deadlocks, and robots do not con-
sistently reach the correct orientation at the goal state. Additionally,
the assumption of circular robots often causes each robot to occupy
too much space in confined environments, leading to planning fail-
ures. In [22], a prioritised dynamic window approach is proposed for
formation coordination. However, this method may also lead to dead-
locks and collisions in narrow environments. In this paper, we adapt
the loosely-coupled multi-robot coordination method in [19] to ad-
dress inter-formation collisions rather than collisions among individual
robots.

3. Preliminaries

In this section, we define our assumptions over the workspace,
robots, and formations. In Table 2, we describe the notation used
throughout the paper.

3.1. Workspace

Let W c R? be a 2D workspace containing a set of static obstacles
O C W, where the obstacle-free workspace is denoted W;,,, = W\
. We assume that the obstacles are convex polygons, which allows
for a safe approximation of most irregularly shaped obstacles. In this
paper, we represent the obstacle-free workspace as a union of convex
polygons. For this, we employ IRIS [35], a convex decomposition
technique which given an initial seed point alternately solves two
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obstacle

hyperplanes .
convex region

Fig. 3. The outcome of running IRIS in a simple environment with three obstacles and
a seed point. Grey areas are obstacles, the red polygon is the convex region produced by
IRIS, and the pink dashed lines show the separating hyperplanes. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

convex optimisations: (1) finding a set of hyperplanes that separate an
ellipse from O via quadratic optimisation; and (2) finding the largest
ellipse within the polygon via a semi-definite programme. An example
polygon synthesised by IRIS is shown in Fig. 3. To decompose the entire
workspace into convex polygons, we run IRIS for a set of equally spaced
seed points across the obstacle-free workspace, denoted C, € W;,,,.
For each seed point C,, we obtain a convex polygon defined by a
matrix A, € R"¢*? and a vector b, € R", where n, is the number of
hyperplanes, equivalent to the number of edges that depict this convex
region. A continuous point C, falls inside this polygon if A,C. <b,.

3.2. Robots

We consider a team of heterogeneous rectangular robots R =
{1,...,n}. Each robot i is described by a tuple r; = (Q;, R;, f,.’y”e, g:y"e),
where Q; is the robot’s configuration space. Robot i’s configuration at
time ¢ is given by ¢;(t) = (x;(0), y;(1), 6,(t)) € Q;, where x;(1),y;(1) € R
is the robot’s position, and 6,(r) € [—=,x) is its orientation. R;(g;(?))
defines robot i’s footprint at configuration ¢;(¢), i.e. the obstacle-free
space occupied by the robot. With this, we write Q',.f " =g, €0 :
R;(g;)) N O = @} to denote the set of obstacle-free configurations for
robot i. f*” is the dynamics model for robot i, which in this paper we
consider to be car-like (a bicycle model) or differential drive (a unicycle
model); we abbreviate these models to car and dif f, respectively. g,,,,
is a set of kinematic constraints for robot i. For a car-like robot, ff%
and g/*" are given by:

x;(1) v;(t) - cos,(1)
d yi(®) v;(t) - sind,(1)
fer p v;(0) = a; (1) . TER,1E01], (@)
¢i(t) wi(l)
0,(t) v;(1) - tang;(t)/L
_U;ar Ui(T) U:‘nar
car . _w;,ar (1) wfﬂar .
g _gtar < a ) < gear |° ieR,te [O,Ifi], 2

m m
e 2ol B RO I et
where ¢;(1), v;(t), w;(1), and q,() are the steering angle, velocity, angular
velocity, and acceleration applied at time ¢, respectively. Further, L
denotes the wheelbase of the car-like robot, signifying the distance
between its front and rear axle, and 7, is the finite planning and
coordination horizon. From this, the state for a car-like robot at time
t is given by z;(r) = [¢;(t), ¢; (1), v;(1)], and the control input is given by
u;(1) = [a;(t), w;()]. g/ is constrained by the car-like robot’s maximum
velocity vé?", maximum angular velocity (", maximum acceleration
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Diff-drive g
* robot

1m

Fig. 4. Linear (2 car-like robots), triangular (1 diff-drive robot + 2 car-like robots),
and rectangular (2 car-like robots + 2 diff-drive robots) formations. In each formation,
each robot is positioned according to its state vector d, relative to the centroid state
q.,, of the formation, with respect to the body frame.

at", and maximum steering angle ¢¢". For differential drive robots,

77 and g*/ are given by:
x;(®) v;(t) - cos,(1)
u d yi(®) v; (1) - sin,(1)
PRl —luw|= a0 . ieR.re(01,], 3)
9,‘(1) CU,'(’)
071(’) Q;(’)
Ldi W
4 Lol [47
i w;(t
g T B Mf < a.'((z)) < Mf , P€R,1E[01], €]
1
_Qixff 2,1 Qﬁi’ff

where Q;(7) is the angular acceleration, and all other variables are the

same as for car-like robots. The state of a differential drive robot is

written as z;(r) = [g;(®), v;(1), £;()], and the control input is u;(1) =
[a; (1), w;(1)]. gd"ff is constrained by the diff-drive robot’s maximum

velocity v/, maximum angular velocity o/ maximum acceleration
d‘f /. and maximum angular acceleration _Q

3.3. Formations

In this paper, we decompose our set of robots R into a set of
heterogeneous formations ¥ = {1,...,n 1. We consider three formation
types: linear formations which contain two car-like robots; triangular
formations which contain one differential drive robot and two car-like
robots; and rectangular formations, which contain two car-like robots
and two differential drive robots (see Fig. 4). Car-like robots can only
maintain a rigid formation if they are driving side by side or in a
straight line [36]. This is due to the car-like robots’ inability to turn
in place [37]. Therefore, in this paper we assume all car-like robots in
the same formation are aligned in parallel. Let formation e contain nj,
robots, the set of which is denoted F,. The eth formation is given by
the tuple Z,(1) = (q¢, (1), (d/5™'}), where ¢¢, (1) = (<5, (). 5%, (0. 65,)
is the configuration at the centre of the formation at time ¢, and d; =
(d,;.d, )T is the relative distance of the ith robot to the formatlon
centre, which should remain fixed. Note that the formation geometry
can be altered by adjusting d,.

4. Formation generation

In this section, we address formation generation, the first sub-
problem of H-MFPC in Fig. 2.

4.1. Problem formulation

The formation generation problem has two components. First, each
robot i must be allocated a formation location g given its initial
configuration ¢;. For formation e, the formation location qf can be
deduced from ¢¢, and d; (see Fig. 4). To avoid collisions between
robots at start or goal positions, we assume R(g]) N R(qj.) = @ and
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R(qf)nR(qf) =@,Vi,j €l,...,n, i # j,i.e. norobot footprints overlap at
the start or goal configurations. Following task allocation, each robot
i € R must synthesise a trajectory 7; which begins at ¢ and finishes
at qf . Upon reaching qf, robot i should maintain its position. Robot
trajectories should be collision free, i.e. R(¢;()) N O =@, 1t € [0, ¢ 7h
and R(g;()) N R(g;(t)) = @. We refer to this problem as heterogeneous
multi-robot trajectory planning (H-MRTP).

4.2. Task allocation

For multi-robot task allocation, we use the optimal Hungarian algo-
rithm [16] with a Euclidean distance cost function. Each formation type
described in Section 3.3 requires different numbers of each robot type.
For example, triangular formations require two car-like robots and
one differential drive robot. To enforce these constraints during task
allocation, we apply the Hungarian algorithm twice, first to allocate
the car-like robots, and then to allocate the differential drive robots.

4.3. Heterogeneous multi-robot trajectory planning (H-MRTP)

We now present a two-stage approach for H-MRTP. First, we solve
the multi-agent path finding problem on an approximate representation
of the environment to synthesise a conflict-free reference path for each
robot. Using these reference paths, we generate safe corridors for each
robot, and then solve a trajectory optimisation problem within these
corridors.

4.3.1. Discrete reference path generation

To synthesise a reference path for each robot, we discretise the
workspace into a 2D grid map, where each cell is either free or
occupied. We then apply the enhanced conflict-based search (ECBS)
algorithm [38] for multi-agent pathfinding to synthesise a collision-free
path for each robot on the grid map. ECBS is a centralised, complete,
and suboptimal algorithm that resolves conflicts in a high-level search
tree to synthesise collision-free paths. The discrete reference path for
robot i is an ordered sequence of K waypoints, where the kth waypoint
is denoted ref¥.

4.3.2. Trajectory optimisation

We now describe how to synthesise robot trajectories from the
ECBS reference paths. We begin by defining the collision avoidance
constraints all trajectories must satisfy.

Obstacle Avoidance Constraints. To avoid collisions with obstacles,
we compute a safe convex region SC; for robot i which its trajectory
must remain inside. Given a trajectory T; for robot i, we compute K
discrete waypoints by taking the robot location at time k4t for k €
{1,...,K}, where KAt = t,. These waypoints are then used as seed
points for IRIS, as descrlbed in Section 3.1. The resulting convex regions
then form the safe corridor, i.e. SC; = U1 ) SCk. Each convex
region in the safe corridor must intersect with the next region, i.e. SCI."n
SC[."Jrl + @, Vke {l1,...,K —1}. If this condition is not met, we use
uniform interpolation along the robot’s trajectory to generate further
IRIS seed points. To avoid collisions with obstacles in O, robot i must
keep its trajectory within the safe corridor. Formally, let p* = (x¥, y¥) be
robot i’s position at the kth waypoint. Robot i’s footprint at waypoint
k can be described with the four vertices {V." (xl Y [) [ = 1..4}.
Further, let 1;; be the relative coordinate of the Ith Vertex within the
body frame. The collision avoidance constraint can be written as:

Vi eR VA= {p + RO 1} € SC,
VieR, I€{l,...4}, ke (l,...,K},

(5)

where R(Gf‘) is the rotation matrix representing the orientation of the
body frame relative to the world frame.

Inter-Robot Collision Avoidance Constraints. To avoid collisions
between robots, the footprints of two or more robots should never
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intersect, i.e. R(g;(t)) N R(g;(1) = @, V¢ € [0, 17,]. In practice, we
can implement this collision avoidance constraint using the inequality
constraints presented in [39] for collision checking between convex
polygons. Briefly, the inequality constraints in [39] check that each
vertex of one robot’s footprint lies outside the footprint of the other
robots.

A Conflict-Based Approach to Trajectory Optimisation. The first
step for trajectory optimisation is to transform the discrete reference
path ref; for robot i into a trajectory T,.’ef . We do this by assigning
a time value t = k4t to the kth waypoint in the path, i.e. T,’ef =
{refk, kat) le Given the initial trajectories for each robot {T'ef .
and the corresponding safe corridors for those trajectories {SC;})_,
trajectory optimisation for robot i can be formulated as a nonlinear

optimisation problem:

1

K-1

min J—Zqu Agk +Zw4u M+ w,®, (6a)

e k=1 k=1

st gt = gk, ub), vk (6b)
(5) (6¢)
u<uf <u Vk (6d)
20 = ginitial (6e)
R(g;(k)) N R(q;(k)) = B,Vj # i, k, (69)

where w,, w, and w, are positive parameters. The objective function is
shown in (6a). The first term imposes a penalty on any deviation from
the initial reference path, represented by Ag* = ¢* — ref¥. This aims to
mitigate robot collisions, as the reference trajectories are collision free,
but may be suboptimal. The second objective function term penalises
large changes in the control input to improve the smoothness of the
synthesised trajectory. In formation generation, robots should start at
their initial location and finish at their formation location. This is
typically enforced as a hard constraint. However, car-like robots cannot
rotate in place, and there may be other robots near a particular robot’s
formation location. This makes it difficult for car-like robots to stop
perfectly at their formation location, making optimisation problem (6)
challenging to solve. To mitigate this, we instead use a soft constraint
which penalises robots for deviating from their formation location. This
is captured in the third term in (6), where @, = (zfv — zlf i”"l)z measures
the deviation from robot i’s final state. @; can also be viewed as a
proxy for the feasibility of the optimised trajectory. We use this to
validate our formation generation approach in Section 8.1. Constraint
(6b) constrains robot i to follow its discrete-time dynamics model,
which is either (1) for car-like robots, or (3) for differential drive
robots. Similarly, (6d) enforces the kinematic constraints of the robot,
dependent on its type. Constraint (6¢) enforces collision avoidance with
static obstacles by constraining the robot to its safe corridor. Constraint
(6e) sets constraints on the robot’s initial state. Finally, (6f) enforces
collision avoidance with other robots.

The trajectory optimisation problem for each robot i is intractable
for large teams due to the non-convex constraints in (6f). To address
this, we employ a CBS-like algorithm for H-MRTP, as proposed in [18].
The core idea is to apply inter-robot collision avoidance constraints
incrementally in a high-level search tree as they are needed. This is
motivated by the fact that the paths of many robots are naturally
far apart, foregoing the need for collision avoidance constraints. A
potential collision between robot i and j is represented by the tuple
(i, j, 1), where t is the timestep at which (6f) is violated.

Our CBS-based H-MRTP algorithm is presented in Alg. 1. We begin
with the reference paths, footprint, dynamics model, and kinematic
constraints for each robot. Alg. 1 runs a high-level best-first search,
where each node H stores a joint trajectory H.traj, the correspond-
ing cost H.cost, and any inter-robot collision avoidance constraints
H .constraints. In line 4, we generate initial reference trajectories from
the reference paths for each robot. In line 6, each robot then solves
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Algorithm 1: H-MRTP

Input: {ref; }" L {r; }[ > map

Output: Colhslon free trajectories T
1 Q < PriorityQueue();
2 H « SearchNode();
3 foreach each i € R do
H{[i].traj <GenerateTrajectory(ref;);
SC; «—GenerateSafeCorridors(H [i].traj, map);
[solution, ®@] <SolveNLP(Hi], r;, SC,);
HJil.traj < solution;
H{i].cost «CalcCost(r;, ®, H);
Q.Push(H);
10 while !Q.Empty() and time not exceeded do
11 H < Q.Pop(); //Lowest cost node
12 if H .traj has no conflicts then
13 ‘ return H .traj;
14 {i, j, z, t} «<FindFirstConflict(H .traj);
15 foreach ¢ € {i, j} do

© o N o U »

16 H' < Copy(H);

17 H' .constraints U {c, z,1);

18 [solution, @,] < SolveNLP(H', r,, SC,);

19 H'[c].traj < solution;

20 SC, <GenerateSafeCorridors(H'[c].traj, map);
21 H'[c].cost «—CalcCost(r,, @, H'[c].traj);

22 Q.Push(H");

(6) to obtain a kinematically feasible trajectory without considering the
other robots. The cost of the resulting trajectories are then computed
in line 8, where CalcCost() computes =0+ 0,40, for each robot i.
Here, J;, J,, and J, represent the normalised trajectory length for robot
i, a value based on robot i’s type (1 for car-like and O for differential
drive), and the normalised @; for all robots, i.e. the deviation from the
start and goal positions. In line 10, we begin the main search loop.
Here, we maintain a priority queue where nodes with lower cost have
higher priority. In each iteration, we pop the lowest cost node from the
priority queue (line 11). If this trajectory is collision-free, i.e. it satisfies
(6f), then we return the solution, which will have minimal cost (lines
12-13). Otherwise, we find the earliest conflicting robot pair (i, j) in the
current node, alongside the conflict state z and conflict time 7. From
this potential collision, we generate two child nodes with different
constraints, one in which the first robot must avoid the second, and vice
versa (lines 16-17). For each child node, we then synthesise a new tra-
jectory for the conflicting robot by solving (6), update the safe corridor
and cost, and then push the new node to the priority queue (lines 18—
22). We update the robot’s safe corridor as the revised trajectory may
change the corresponding homotopy class and thus the safe corridor.

Our approach follows the same high-level CBS search procedure
as [18]. However, [18] assume robots have a circular footprint, which
can cause conservative behaviour in confined spaces, or failure to find
a solution in the worst case. We adapt the low-level trajectory optimi-
sation to handle robots with rectangular footprints, and demonstrate
how this improves performance in Section 8.

5. Formation planning

After each robot has reached its formation location, we must solve
the formation planning problem. Here, we must synthesise a safe and
kinematically feasible trajectory for each robot such that its formation
moves from an initial configuration to the target configuration while
maintaining rigidity and obstacle avoidance. Maintaining a perfectly
rigid formation is extremely difficult due to the non-holonomic nature
of robots, the necessity of obstacle avoidance, and actual control er-
rors. In optimisation problems, capturing formation rigidity as a hard
constraint would drive the solver to significantly slow the robots to
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achieve more precise control. Such control would involve frequently
adjusting speed and direction to maintain rigidity, ultimately leading
to an ill-conditioned optimisation problem. In the worst case, imposing
hard formation constraints can result in the failure of the optimisation
solver. Therefore, our formation planner captures rigidity as a soft
constraint, allowing for a certain degree of deviation. In this section, to
balance rigidity, task completion time, and the smoothness of control
inputs, we present an iterative two-stage optimisation framework that
continuously adjusts the weight parameters of the cost function until
the solution meets a predetermined acceptable formation error. We
begin by formalising the formation planning problem.

5.1. Problem formulation

Efficient trajectories for heterogeneous formations must be smooth,
fast, and maintain formation rigidity. To achieve this, we formulate
the formation trajectory planning problem for each robot y in the eth
formation as follows:

zy(rﬁyi(r}),rfy I3(2,(0), u, (1) (72)
St 2,0 = f(z2,(0), uy ), 7b)

2,(0) = 2", uy(0) = i, 70)

Zy(lfy) _ Z;i}m[’ uy(tfy) _ u}j}’inal’ 7d)

Oz, (1), uy(1), 1) <0, Ve €10, 1, ],
VyeF,. (7€)

Here, (7a) is the trajectory cost function, which we describe later in
this section, and t,, is the trajectory duration. Eq. (7b) is the dynamic
constraint associated with the robot. Egs. (7c) and (7d) define the
initial and final state constraints of the robot, in addition to the initial
control and final control input constraints. Function G encompasses the
robot’s obstacle avoidance constraints and kinematic constraints. In the
remainder of this section, we elaborate on how we solve this optimal
control problem.

5.2. Stage one: Trajectory optimisation for the formation leader

Our first step towards formation planning is to select a single robot
in the formation as leader. The leader will then be used to synthe-
sise collision-free, kinematically feasible trajectories for all robots in
the formation. The follower robots must follow these trajectories to
maintain formation rigidity. In this paper, we select a car-like robot as
leader. If we selected a differential drive robot as leader, car-like robots
would have to maintain a constant relative distance to a differential
drive trajectory. This is hard to achieve for car-like robots, as their
inability to rotate in place restricts their ability to make tight turns
or precise directional adjustments [37] In contrast, differential drive
robots can easily follow a trajectory generated for a car-like robot
due to their increased maneuverability. Car-like followers can also
accurately maintain a relative distance to a car-like trajectory, assuming
they are aligned in parallel with the leader [36].

5.2.1. Cost function
To synthesise a trajectory for leader robot i, we optimise the follow-
ing cost function:

fi
J, = w, / (@ () + u (" (©)d T+ w,t 7, (8
=0

where w; and w, are positive weight parameters. The first cost term
encourages the robot to follow a smooth trajectory towards the target
by penalising high control inputs and acceleration. If the control input
and acceleration is high, the robot is more likely to experience sharp
changes in movement. The second cost term captures the trajectory
duration.
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Fig. 5. Left: The motion primitives proposed in [42]. Right: The motion primitives
used in this paper.

5.2.2. Initial guess

The optimal control problem in (7) can be reformulated into a
nonlinear optimisation problem. It is common to start exploring the
highly complex search space with an initial guess derived from the
approximation of some constraints. The initial guess can also deter-
mine the homotopy class of the optimal trajectory [40], aiding in
the identification of topologically equivalent paths, and thus reducing
computational complexity. We also use the initial guess to construct
the robot’s safe corridor [41], which defines a safe boundary for
collision-free navigation in a way that simplifies the obstacle avoid-
ance constraints, improving computational efficiency. To synthesise an
initial guess, we extend hybrid A* [42] to handle the curvature and
collision avoidance constraints of the formation. We refer to this as
formation-constrained hybrid A* (FCHA*). We now describe two key
components of FCHA*: the motion primitives which form the actions
of our search tree, and the collision checking mechanism which tests if
a search node is reachable.

Motion Primitives. In hybrid A* [42], search nodes contain the
continuous state of the car-like leader. Nodes are expanded by applying
a set of motion primitives, such as turn left, go forward, or turn right
(as shown on the left in Fig. 5). To maintain rigidity when the leader
executes a turn, followers on the outside of the leader may need to
exceed their maximum velocity, and followers on the inside may need
a below-minimum turning radius, causing the robot to move backward.
The transition from forward to backward motion would initiate a
jerk in the robot’s movement, which is detrimental to maintaining
formation rigidity [8]. To avoid violating the kinematic constraints of
the followers or causing the followers to move backward, we integrate
the followers’ kinematic constraints into the leader’s motion primitives,
as shown on the right in Fig. 5. The minimum turning radius of
the jth follower robots |r””| depends on their type, with car-like

m, j

robots and differential drive robots defined as [r¢"| = W and
4 m

|ri,’f /| = 0, respectively. If we consider the desired formation as a rigid

body when the leader robot executes a circular trajectory, based on
Ackermann steering geometry [43] and the definition of curvature, the
minimum turning radius of leader robot i which prevents follower j
from reversing can be derived as follows:

ryo < Ddyll - cosy), dy ; # 0,
i =Y 2. [F2P51 2 1l | - cos(w), dy, ; # O, ©)
r3,; dx,j =0,
where:
= ;| - sin(y),
2
ray= om0 = - cosw))s
ry ;= AL (10)
3, m, j Vi
Y= atanZ(dy—‘j).

J
In (10), the constant value § is set to —1 if the formation rotates
clockwise, and 1 otherwise. With this, the adjusted minimum turning
radius of the leader robot is given by r; = minj{rfn‘j, rear} if the
formation rotates clockwise, and r} = maxj{r:l,j, ree} otherwise, Vj €

{0, 1,....n; — 1} Given r;, the maximum steering angle of the leader
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Fig. 6. The steering angle velocity constraints imposed by the rigidity of parallel
formations.

robot i is ¢}, = arctan(ré). Further, the desired linear velocity of the jth
follower, with respect to the formation leader, can be expressed as:

d - Uleader " 32 d.Il - 2
] = et I+ 72+ - costu)), o

Vi€{0. L....ng ).

In order not to violate the kinematic constraints of all follower
robots, the maximum velocity of the leader robot must satisfy:

R Lo 7l
03] = min ,
Vs 412+ (1] - cosw)? a2

Vie(0. L....ng ).

where u;{’f is the maximum velocity of the jth follower robot. As an
example, consider a linear formation, as in Fig. 6. The revised motion

C . . L+|d, {|-(tan(¢},"))
primitives of the leader are given by ¢} = arctan(—L_m( 5
vear.

—=2— where |d, 4| and |d, ,| are the lateral offsets
L+ldy o|-tan(¢y,) ¥, ¥

between the car-like follower and the leader relative to the leader’s
exterior and interior, respectively.

S —
and v; =

Collision Check. During node expansion, hybrid A* checks if a po-
tential successor node causes a robot’s footprint to intersect with an
obstacle. If an intersection occurs, the node is not added to the search
tree. For formation planning, we must check the footprint of the entire
formation during collision detection. For this, we first define the centre
of the leader’s rear axle and its orientation as the origin and x-axis of
the body frame for the formation, respectively (see Fig. 6). Let robot i
be the leader of the eth formation. From the formation centre position
Pe (0 = (x¢,,.(0), yf,tr(t))T and its orientation 6, (1), we can compute a set
of vertices which capture the convex hull representing the formation’s
footprint at time #:

Vo) = 9, (0 + ROS, (D) -1, .
Vee F,c= 1,‘..,ne’c, t € [0, tfi]’

V,. R?
ec() € 13)

where 7, . is the number of vertices and 1, is the relative coordinate of
the cth vertex in the body frame. With this, during node expansion we
check whether the convex hull representing the formation’s footprint
intersects with any obstacles in the environment.

5.2.3. Obstacle avoidance constraints

After synthesising the initial guess, the convex hull formulation
in (13) can be used to enforce obstacle-avoidance in the leader’s
trajectory. Similar to Section 4, we can take a trajectory, extract a
number of discrete waypoints from it, and then use these as seed points
for IRIS to generate a set of safe convex regions (see 5). However, here
we use the footprint of the formation rather than that of a single robot.
We denote the safe corridors for formation e as SC,:

V() €SC1), Ve€F,c=1,...n,.1e0,1]. 14)
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Algorithm 2: Trajectory optimisation for the leader i.

Input: r;, Z,, map, w;, w;
Output: T;, ¢;, SC,

SC, < §;

if T,,,,, = 0 then

Xguess < FCHA*(map);

Tyess —GenerateTrapezoidalProfile(r,,,,,);

SC, «GenerateSafeCorridors(Ty,,,,. Z.. map);
GenerateOCP(r;, SC,, Z,, w,, w,);
T; «<Solve (15);

return [T}, SC,]

® N O U AN W N

Algorithm 3: Trajectory optimisation for follower ;.

Input: T T;, map, SC,
Output: T;
1 Tj'ef «—GenerateRefTraj(d,, d;, T,);
2 GenerateOCP(r;, SC,, T/.’ ef );
3T «Solve (19);
4 return T;

With this, we can rewrite the optimal control problem for the leader
robot i using the safe corridor; the initial and terminal constraints; the
car-like dynamics models; and kinematic constraints with the modified
maximum/minimum steering angles introduced in Section 5.2.2:

min (8
00,1,
s.t. (1), (15)
(70), (74d),
(2), 14).

We summarise our procedure for synthesising the leader’s trajectory
in Alg. 2. Here, we synthesise an initial guess trajectory from the FCHA*
path using a trapezoidal velocity profile (lines 3—-4) [44]. This is then
used in line 5 to construct the safe corridor.

5.3. Stage two: Trajectory optimisation for the followers

After synthesising the leader’s trajectory, we must synthesise trajec-
tories for the followers which maintain rigidity by sustaining a constant
relative position with respect to the leader. We present our approach
for follower trajectory optimisation in Alg. 3.

We begin with GenerateRefTraj in line 1, which extracts a
reference trajectory T/.'ef for follower j using the leader’s trajectory T,
and the known formation geometry. Concretely, the reference position
of follower j at time 7 is derived from the leader i’s position:

() = (1) + (d; — d)) - R (6,0, 16)

where d; and d; represent the position vectors of leader i and follower j
relative to the centre of the formation, as shown in Fig. 4. To transform
the world frame to the body frame, we use a rotation matrix R/(6;(t)) =
[sin(8;(1)) cos(8;(1)); —cos(8;(t)) sin(f;(?))]. Note that our framework can
be applied to irregular formation shapes by adjusting the value of d;,
which is the distance of the ith robot to the formation centre. With this,
FCH A* and the subsequent trajectory optimisation keep the formation
within the safe corridors generated by IRIS [35] to guarantee collision
avoidance. Using the reference trajectory we then formulate trajectory
optimisation for follower j as an optimal control problem similar to (7)
with the following cost function:

1f;
J= / ajz.('r)+uj(T)ujT(T)+weAp/-(T)ApjT(T)dT, a7
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[ ] goal

obstacle &k configuration

start [ ]
configuration ; 1k

(a) The initial (bottom left) and goal (top right) configurations
of the formation.

-

(c) An initial guess for the leader is generated alongside the
safe corridor (blue).
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(b) A car-like robot is selected as leader and FCHA* is used
to generate a coarse path (red).

(d) (15) and (19) are solved iteratively until a kinematically

feasible, safe, and time-optimal trajectory is found for the
leader (red) and followers (green).

coarse path

leader robot

Fig. 7. An illustrative formation planning example for a triangular formation.

where w, is a weight parameter. The first term encourages smoother
trajectories, as in (8), and the second term encourages the follower to
minimise its positional error with respect to the reference trajectory,
denoted 4p;. Here, we use soft formation constraints as the non-
holonomic nature of car-like robots makes it challenging to maintain
rigidity while avoiding collisions. In the worst case, using hard for-
mation constraints would make the optimisation problem unsolvable.
To guarantee collision avoidance with obstacles, we use the formation
safety corridor SC, constructed during leader trajectory optimisation
to guarantee that the follower’s footprint remains in the safe corridor
at each timestep:

V() €R? 1 V(1) = (p;() + RO,()) - 1;,) € SC,(0),

(18)
VieR,le{l,...,4},t €0, rf/].

The kinematic constraints of the follower are defined using (1) and (2),
or (3) and (4), depending on the type of the follower. With this, we
formulate the optimal control problem for follower j as follows:

min 17)
zj(0), u; (1), ’fj
s.t. (1)/(3), (19)
(70), (7d),

4)/(2), (18).

5.4. Iterative framework

By executing the two formation planning stages described above,
we can synthesise trajectories for all robots in a formation. However,
during trajectory planning for the leader, we ignore the kinodynamic
constraints of the follower. This may make the reference trajectories
for the followers impossible to execute, leading to significant formation
errors. To address this, in Alg. 4 we present a framework for trajectory
planning which iterates between trajectory optimisation for the leader
and for the followers. We iterate between these steps (lines 4-9) until

Algorithm 4: Our complete formation planning method.
Input: {rf}fepe, Z,, map
Output: T

1T <0, Tyuess < @, iter < 0, err,,, < +00, err « +oo;

2 while err,,. > t,,, OF err > p,,, do

3 select robot i as a leader;
4 // 15" stage
5 [T;, SC,] «CalculateLeaderTraj(r;, Tyes5, Z,> Mmap, wy);
6 Tguess - Tl’
7 | // 2" stage
8 foreach j#ivjeF, do
9 ‘ T; «CQCalculateFollowerTraj(r;, r;, T;, map, w,, SC,);
10 [err, err,,,,] =CalculateFormationError(T, Z,);
11 Wy < a-wg;
12 w, < f-w,;
13 iter « iter + 1;
14 if iter > iter,,,, then
15 ‘ return (J;
16 return T

the average and maximum formation errors fall below a predetermined
threshold (line 2), or an iteration threshold is met (line 14). After
each iteration, we multiply the weight parameter w, in the leader’s
cost function (8) and weight w, in the follower’s cost function (17)
by a and p respectively (lines 11-12), where a,f > 1. Lower values
of a and g will result in more efficient plans at the cost of increased
planning time. By increasing w, for the leader, we begin to prioritise the
trajectory’s smoothness over its duration, making it easier to execute.
By increasing w, for the followers, we begin to prioritise the tracking
error with respect to the reference trajectory over smoothness, penal-
ising deviations away from the reference trajectory. Note that in each
subsequent iteration, the leader’s initial guess is set to the trajectory
from the previous iteration (line 6).
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(a) Dark blue denotes the path of leader robot 1. p1(0) and
p1(1) denote the start and end point of the path, respectively,

while p1 (o) represents any point along the path.
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(b) Using leader robot 1 as an illustration, the red bounding

box symbolises its formation’s footprint F; (p1(c)), and the

white denotes its spatial envelope £(p1).

(¢) The critical section C12 of formation 1 and formation 2
is depicted. The blue and green bounding boxes represent the
instantaneous footprints of formations 1 and 2 as they enter

and exit Cy2, respectively.

(d) Since formation 1 yield to formation 2, formation 1 is
not allowed to exceed Fi (p1(m1)) until formation 2 crosses
C12, indicating that it has left the critical section.

Fig. 8. An illustrative example of the coordination approach in [19].

We demonstrate our formation planner in Fig. 7. In Fig. 7(a), we
present a scenario where a triangular formation must navigate to the
top right of the map, with black areas indicating obstacles. Fig. 7(b)
displays the initial coarse path for the leader robot. The safe corridors
along this coarse path are depicted in Fig. 7(c)). Fig. 7(d) shows the
final trajectories synthesised by iteratively solving (15) and (19). These
trajectories are kinematically feasible, safe, and time-optimal.

Alg. 4 returns a feasible solution if at each time step ¢ there exists
at least one feasible formation configuration within the current convex
region which satisfies constraint (14). If no feasible configuration can
be found within a convex region, optimisation problem (15) will fail
without a solution. Therefore, if our algorithm returns a solution, it
is guaranteed to be feasible. IRIS is not guaranteed to find the largest
possible convex region in the environment [35]. The success rate of
our algorithm is highly dependent on the initial safe convex region.
The initial convex region is generated based on the result of FCH A*
in Section 5.2.2. During FCH A*, we explicitly consider the formation’s
convex hull during collision detection to ensure a collision-free initial
guess. By considering the convex hull during FCH A*, we hope to
maximise the chance of finding a solution in Alg. 4.

6. Formation coordination

In this section, we propose a loosely-coupled approach for inter-
formation collision avoidance which forms the coordination component
of our H-MFPC framework (see Fig. 2).

6.1. Problem formulation

Consider a formation where robot i is the leader. Let ¢/ and qf be
the start and goal configurations of robot i, and p; : [0,1] — Qlf ree

10

represent the sequence of configurations g, € Q‘.f " along robot i’s

trajectory, where p;(0) = ¢}, p;(1) = qig (see Fig. 8(a)). Here, p; is
parameterised by an arc length ¢ € [0, 1]. Given the workspace W,
obstacles O, and the trajectories {7;}/_, obtained in Section 5, the
multi-formation coordination problem is to synthesise a revised set of
trajectories {7 d }i_, that satisfy the following criteria:

(1) At no point does the footprint of two or more robots intersect,
le V(i.j#1) € RXR, V€0, 1,], R(p,(1) N R,(p; (1) = F.

(2) Each formation maintains rigidity throughout execution.

(3) All robots eventually reach their destination, i.e. Vi € R, 3¢
< o0, q;(t) = qf.

6.2. Multi-formation coordination algorithm

To solve the multi-formation coordination problem, we adapt the
coordination framework in [19] for formations. In [19], the velocity
profile of mobile robots is adjusted online based on local information
while maintaining kinematic feasibility and safety. For multi-formation
coordination, we begin with the formation trajectories synthesised in
Section 5.4, and then revise core concepts in [19] for formations.

Spatial envelopes. For the formation led by robot i, its footprint is
associated with the leader’s pose p;(¢), denoted as F;(p;(c)). The spatial
envelope &(p;) is the total area covered by the formation’s geometry
along its path, which can be described as the union of successive
footprints of the formation such that U, 1} F;(p;(0)) C (p;); also, let
e(p;(o))ior ) = Uselo,.0,1 Fi(Pi(0)). We visualised the above definition
in Fig. 8(b).

Critical sections. A critical section is an area of intersection be-
tween the spatial envelopes of two formations. Let C;; be the decompo-

sition of the set {¢; € Q;, 4; € Q;|Fi(g) N &(p;) # BV F;(q)) N e(p;) # B}



W. Zhang et al.

Algorithm 5: The multi-formation coordination algorithm,
adapted from [19].

Input: {T;)"_, (), (F.).,. map
Output: 7,4
1P<@,C<0, T <@ t<0;
2 while true do

3 foreach leader robot i € R do
4 p; <ExtractPathFromTraj(T});
5 P <Puip};
6 foreach pair of leader robots (p;, py4;) € P* do
7 ‘ C « C U getlntersections(e(p;), e(p;/));
8 T < reviseConstraints(P, C, T, 1);
9 foreach p; € P do
10 Ti={3j : (P Py u§) €T Y
11 if 7; # ¢ then
12 el — argmin o = p;(g);
q;€T;,0€[0,1]
13 p; < InsertWaypoint(p;, g, 1);
14 else
15 ‘ p; < StitchPathToGoal(p;, p;(1), 1);
16 if 7 = ¢ then
17 ‘ break;
18 t—t+ At
19 foreach p, € P do
20 T‘.'ef « GeneratelnitialGuess(p,);
21 Tf"“’d «CalculateFollowerTraj(r;, ;, Tl.'ef , map, 9);
22 foreachieF,, j#inj€EF, do
23 Ty 4 « CalculateFollowerTraj(r;, r;, T, map, ¥);

24 return 7¢°"4

Fig. 9. m,(1) is continually updated to represent the current state of formation 2.
This instigates a following behaviour, whereby formation 1 persists in advancing as
formation 2 progresses along p,.

into its largest contiguous subsets. Each of these subsets C € C;; is
a critical section. For each critical section C € Cijs let I,.C e [0,1]
and uiC € [0,1] denote the instants immediately before the formation
enters C and immediately after the formation leaves C (see Fig. 8(c)).
Formally, p,(I€) & C, p,(u) & C, and p,(c) € C, Vo € (I°,u5). A critical
section C is active if at least one robot is present in C. We denote the
set of active critical sections at time ¢ with C(z).

Precedence constraints and critical points. Given a critical sec-
tion C € C(r), we can define a precedence constraint (p;, pjs m;, uf),
which enforces that leader robot i cannot navigate beyond configura-
tion p,;(m;(1)), m;(t) € [0,1] at time ¢ until leader robot j has surpassed
configuration pj(uf), uf € [0,1] (see Fig. 8(d)). This constraint defines
which formation should yield, where it should wait, and when until.
m; is time-dependent, as the location robot i can reach is dependent on
robot j’s progress. This allows for robot i to follow robot j through
the critical section whenever feasible, rather than waiting for robot
j to completely exit. We illustrate the following behaviour in Fig. 9.

11
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Formally, let o;(r) and o,(¢) be the positions of leaders i/ and ; at time ¢,
respectively. The precedence constraint states that robot i cannot pass
m;(t) at time ¢ unless robot j has left the critical section, where:
m () = { max{l[C, ri; (O} if o;(1) < uf 20)
1 otherwise.

Here, r;;(1) is the last configuration that robot / can access along its
path p; at time 7 without overlapping with robot j’s footprint. Formally,
ry0) = suplo € [0, u] : e 0 ep) @O = gy (20)
implies that robot i is constrained from surpassing robot j’s current
configuration while robot j remains in the critical section. Let 7 (r) be
the set of precedence constraints active at time ¢. With this, if C € C(z),
then (m;, uf) or (m;, uic) € T(), i.e. if a critical section is active, one
of the conflicting robots must wait. The precedence constraints enforce
an order for robots to cross a critical section, ensuring collision-free
trajectories. We define a critical point as the last reachable configuration
for robot i which adheres to the current set of precedence constraints
T (1). The multi-formation coordination problem can then be reduced
to computing and updating the set of critical points such that collisions
do not occur. For a critical section C, we assume that lic > 0 and uic <1
for all leaders i, i.e. no robot begins or ends in a critical section.

We present our multi-formation coordination algorithm adapted
from [19] in Alg. 5. We begin by extracting the path p; for each leader
robot i from their trajectory synthesised in Section 5 (lines 4-5). Next,
we compute the critical sections for each pair of spatial envelopes and
add them to the set C (lines 6-7). In line 8, we then convert the critical
sections into a series of precedence constraints for each formation. We
follow the priority ordering in [19], where robots closer to the critical
section have higher priority. Moreover, the priority ordering must be
dynamically feasible to guarantee safety, i.e. waiting robots must be
able to stop before the critical point. In lines 9-15, we adjust the paths
of each formation leader i given the precedence constraints. We do
this by finding the configuration ql.‘“””’ which the leader i is currently
forbidden to pass, and forcing the robot to wait there until the critical
section is free. If there are no constraints applied to a formation, it
can navigate directly to the target. After updating the paths for each
formation leader, in lines 19-23, we generate the updated trajectories
for each formation. For this, we use the updated paths to synthesise
an initial guess for each leader, and then solve the optimal control
problem (19) in Section 5.3 without the safe corridor constraints in
(18) to compute the updated trajectories for the leader and followers.
We do not consider obstacle avoidance constraints in Alg. 5, as the up-
dated paths remain on the spatial envelope of the formation’s original
path, which is guaranteed to avoid obstacles. Further, as the original
path considered the kinematic constraints of both the leader and the
followers, the revised path can still be tracked in a straightforward way.

We illustrate the critical-section based coordination approach in
Fig. 10. In Fig. 10(a), two formations must navigate through a narrow
passage which can only accommodate one formation at a time. Forma-
tion B is closer to its critical point, and thus enters the critical section
first. As a result, formation A reaches a critical point and must wait for
formation B to leave the critical section before continuing (Fig. 10(b)).
Once the path is clear, formation A can then proceed towards its target
(Fig. 10(c)), and both robots complete navigation without collisions
(Fig. 10(d)).

7. Trajectory tracking

In this section, we implement a trajectory tracking controller for
closed-loop control of the trajectories synthesised for each robot. For
robot i, the deviations in the x direction, y direction, and orientation
between the reference trajectory and the actual tracking trajectory
within the world frame are denoted as x;, = x;, — X; ., Vi, = Vi, = Vies
and 6, , = 6, , — 0, ., respectively. For differential drive robots, we apply
a control law adapted from [20] to accommodate a predefined target
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(b) [Our methods]: Formation A
stops at the critical point and waits
until Formation B leaves the critical
section.

(a) [Our methods]: Formations A
and B are on track to reach their re-
spective target points. Each forma-
tion’s critical points are highlighted
in red.

(e) [Prioritised DWA]: Formations
A and B are on track to reach their
respective target points.

(f) [Prioritised DWA]: Formation
A treats formation B as an obstacle
and computes its convex region.

(d) [Our methods]: The two for-
mations reach their respective target
points.

(¢) [Our methods]: Once forma-
tion A is clear ahead, proceed to
the target point.

(g) [Prioritised DWA]: Formation
A backs off to prevent a collision
and computes the updated convex
region.

(h) [Prioritised DWA]: Formation
B is eventually clear of A, and A
returns to trajectory tracking.

Fig. 10. A comparative illustration showcasing the differences between our methods and prioritised DWA in a narrow corridor. Fig. 10(a) through 10(d) depict our proposed
loosely coupled centralised approach, while Fig. 10(e) to 10(h) illustrate the prioritised DWA as presented in [22]. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

trajectory. This control law calculates a control input (v, ., @; ) for each
follower robot based on the control error e:

Vie = 0;,€08(0; ) + Ky X; o, 21

Coi,c = wi,r + Ui,r(Kyyi,e + KG Sin(ai,e))’ (22)

where K., K, K, are positive parameters. v;, and w;, respectively
denote the target velocity and target angular velocity of robot i’s open-
loop trajectory, as obtained from Section 5. For car-like robots, the
control law is implemented as in [21]:

Ui,c = Ui,r Cos(ai,e) + kxxi,e’ (23)
(w;, +k,y;, +kp0; )L
¢ic — tan -1 ( ir yVie 0Yie )7 (24)
' Vie

where k&, ky, ky are positive parameters which can significantly affect
the efficacy of the tracking controller. However, in this paper, we
are only concerned with minimising the tracking error under pos-
sibly suboptimal parameters, rather than searching for the optimal
parameters.

8. Experiments

In this section, we demonstrate the efficacy of our approach in
simulation. All experiments are run on Ubuntu 20.04 with an Intel
Core i9 processor @ 3.2 GHz and 16 GB of RAM.! All software is
implemented in C++. To solve the optimal control problem, we use the
explicit Runge-Kutta method [45] to form the nonlinear programming
(NLP) problem, employ ADOL-C [46] for automatic differentiation,
and utilise CasADi [47] with the primal-dual interior-point solver
IPOPT [48] for solving the nonlinear programming. We use Boost [49]
to generate spatial envelopes and identify critical intersections for
formation coordination. We list all solver parameter values in Table 3.
For all experiments, we simulate a 384 m x 384m environment in Gazebo

1 The source code is available: https://github.com/HyPAIR/Heterogeneous-
formation-controller

12

Fig. 11. The simulation environment used throughout our experiments.

Table 3
Experimental parameter values.
Parameter Value Description
L 0.65 m Car-like robot wheelbase
veer, ot 1.0 m/s, 1.0 m/s Linear velocity limit
acr, a4 1.0 m/s’ Linear acceleration limit
oo 0.68 rad Steering angle limit
s, !’ 0.2 rad/s, 1.5 rad/s Angular velocity limit
Qo 2.5 rad/s? Angular acceleration limit
- 02 m IRIS grid size
At 0.15 s Time between control inputs
W, Wy, W, 0.1, 1.0, 10 Weights for cost function (6a)
wy, w, 0.1, 1.0 Weights for cost function (8)
w, 0.5 Weights for cost function (17)
Havgs Himax 0.01 m,0.02 m Algorithm 4 convergence threshold
iter,, . 25 Maximum iterations in Algorithm 4
a, 1.1, 1.1 Weights for Algorithm 2
K., K,. K, 0.3, 0.1, 0.7 Trajectory tracking parameters
kys ky, kg 2,4,14 Trajectory tracking parameters

which contains obstacles, narrow corridors, and tight corners. We show
this map in Fig. 11. We model the footprint of each robot as a 1m x 0.8m
rectangle, and consider linear, triangular, and rectangular formations,
as shown in Fig. 4.
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Fig. 12. The 15(5 * 3)-robot formation generation problem.

8.1. Formation generation performance

First, we evaluate formation generation performance as the number
of robots increases. We compare our formation generation method
against the following state-of-the art approaches:

» Conflict-based model predictive control (CB-MPC) [18]: CB-
MPC models the footprint of each robot as a circle and resolves
potential collisions incrementally using conflict-based search [17]
with MPC as the lower-level planner.

Prioritised trajectory optimisation for multiple non-
holonomic robots (MNHP) [25]: Similar to CB-MPC, MNHP
also models robot footprints as a circle. MNHP partitions the
robots into a group, and assigns a priority to each group. Joint
trajectories are then synthesised for each group, where lower-
priority groups must then avoid the trajectories of robots in
higher-priority groups.

Distributed model predictive control (DMPC) [29]: DMPC is
a decentralised approach where each robot synthesises its trajec-
tory independently while anticipating the actions of neighbouring
robots.

We consider multi-robot systems ranging from 4 to 24 robots, where
the robot types per formation are defined as in Fig. 4. For each number
of robots, we randomly generate 30 non-overlapping, obstacle free start
and goal locations. We show an example problem instance in Fig. 12. A
method is successful if each robot reaches its respective target without
collisions within 30 s. For all baselines except DMPC, we use ECBS [38]
to synthesise the reference trajectories. In this experiment, we measure
the success rate, computation time, average travel distance, and the
makespan, i.e. the time for the last robot to reach its formation location.
Failed instances are excluded when measuring the computation time,
travel distance, and makespan. We present our results in Fig. 13, which
specify the formation configuration for each number of robots. For
example, 8(1 % 2 + 2 = 3) indicates 8 robots arranged in 1 linear
formation and 2 triangular formations.

In Fig. 13(a), our approach consistently achieves the highest success
rate, which is often above 80%. This is because our approach precisely
models robot footprints as a rectangle. This results in less conservative
inter-robot collision avoidance constraints, improving the chances of
finding a valid solution. Conversely, the baselines model each robot
as a circle. This reduces the robot’s feasible space when approaching
the target configuration, and limits the solution space. Under DMPC,
each robot plans independently without any explicit coordination. This
causes frequent deadlocks; for 24 robots, 50% of the problem instances
were unsolvable. The success rates of MNHP and CB-MPC decrease with
the number of robots due to their use of a circle as a footprint model,
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which limits the solution space. In particular, when the robot formation
locations are close together, MNHP struggles to find feasible paths for
lower priority robots within the allotted time.

In Fig. 13(b), the computation time of each approach increases
approximately linearly in the number of robots. Each approach either
decouples inter-robot collision constraints, or plans in a distributed
manner, simplifying planning. CB-MPC models the robot footprint as
a circle, which simplifies the inter-robot collision avoidance constraint
to a distance check between the centre of two circles. This improves
computational efficiency at the cost of a lower success rate. Though
MNHP plans for each group sequentially to improve scalability, lower-
priority groups are subject to high numbers of constraints, which
increases the complexity of planning for that group. The DMPC results
show the sum of computation times for each robot. Though this time
would decrease if run in parallel, the individual computation times for
each robot are still relatively high due to the complexity of handling
predictions of robot behaviour during trajectory optimisation [50].

In Fig. 13(c) and Fig. 13(d), there is little difference in the average
travel distance between our approach, CB-MPC, and MNHP. This is be-
cause each of these approaches use reference paths generated by ECBS
on a coarse grid representation of the environment. DMPC only consid-
ers local information from neighbouring robots during planning, which
often causes robots to take long detours in densely populated with ob-
stacles and other robots, increasing the makespan and travel distance.
Though our approach produces trajectories with similar makespans and
travel distances to CB-MPC and MNHP, its success rate is still superior.

Next, we investigate the impact of softening the terminal constraints
in cost function (6a). For the previous experiment, we record the
terminal position error, i.e. the average Euclidean distance between
each robot’s final and target position; and the terminal orientation
error, i.e. the average deviation between each robot’s final and tar-
get orientation, for each experimental run. We present the results of
this analysis in Fig. 13(e) and Fig. 13(f). The average position and
orientation error are consistently lower than 0.0053m and 0.0043rad
respectively. This demonstrates that the soft terminal constraints have
negligible impact on the quality of the synthesised trajectories.

8.2. Formation planning performance

Next, we evaluate our formation planner. For each type of for-
mation, we randomly generate 200 start and target locations, where
the start and target are at least 5m apart. For each pair of start and
target locations, we record the trajectory length and the corresponding
planning time, which is the sum of times spent generating safe cor-
ridors, planning coarse paths, and optimising trajectories. In Fig. 14
we show that the planning time increases roughly linearly with the
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Fig. 13. The results of the formation generation experiment.
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Fig. 14.

Fig. 15. An example trajectory planned for a triangular formation of two car-like robots
and one differential drive robot. The leader trajectory is in red, and the follower
trajectories are green. Black areas are obstacles, and blue areas represent the safe
convex regions generated using IRIS [35]. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

trajectory length. In Table 4 and Fig. 17 we break down the planning
time into its constituent components We also show the proportion of
the planning time. For each formation type, safe corridor generation
takes a few milliseconds, and initial path planning takes around 75
milliseconds on average. The majority of planning time is then allocated
to trajectory optimisation. We break down the trajectory optimisation
time for the leaders and followers in Table 5. Trajectory optimisation
takes longer for the leader, as the collision avoidance constraints for
the entire formation are considered during planning, which reduces
the solution space. Conversely, each follower only has to consider their
own obstacle avoidance constraints, which alongside a quadratic cost
function allows for efficient trajectory optimisation.

Next, we evaluate the quality and feasibility of the previously
generated trajectories for each formation type. Our planner produces
collision-free trajectories across all problem instances. We present an
example trajectory of a triangular formation consisting of 2 car-like
robots and 1 differential drive robot in Fig. 15, where the formation
must move an object from the initial point (73.0 m,39.0 m) to the
target point (57.0 m,39.0 m). In Table 6, we show the steering angles,
velocities, travel time, and formation error across all problem instances.
These results show that our synthesised trajectories keep the maximum
steering angle and velocity within the limits detailed in Table 3, where
the formation error is often below 0.1m. Moreover, the maximum veloc-
ity often approaches the upper limit of 1 m/s. These results demonstrate
that our formation planner synthesises efficient trajectories without
violating kinematic constraints.

To provide insight into our parameter choices, we conducted addi-
tional experiments to show how the initial values of w; in (8) and w,
in (17) affect formation planning performance. Recall that w, is used to
penalise the control effort in the leader’s cost function, and w, penalises
the deviation from the reference trajectory in the followers’ cost func-
tion. For this, we randomly generate 35 initial and target configurations
for a rectangular formation in the environment in Fig. 11. For each
configuration pair, we set w, and w, to 0.05x 1.1¥,k € {1,...,32}. This

20 40 60 80 100 120 140 160
Length of the trajectory [m]

(b) Triangular formation.

15

0 20 40 60 80 100 120 140 160
Length of the trajectory [m]

(c) Rectangular formation.

Planning time as the trajectory length increases.

results in 1024 combinations. For each combination, we measure the
average formation position error, maximum formation position error,
average speed, average acceleration, average angular velocity, and task
completion time. We present the results in Fig. 16.

Fig. 16(a) and Fig. 16(b) show that formation error decreases sig-
nificantly as our parameters increase. As w, increases, the leader’s
trajectory and the corresponding reference trajectory for the follow-
ers becomes smoother. This is reflected in the reduction in average
acceleration and angular velocity in Fig. 16(d) and Fig. 16(e), which
makes the trajectory easier for followers to track. As w, increases,
followers will attempt to track the reference trajectory more closely.
With this, increasing the parameters leads to higher rigidity. However,
increased rigidity requires more precise control which leads to longer
task completion times, as illustrated in Fig. 16(f). This imposes a trade-
off between rigidity and completion time when selecting w, and w,.
For our experiments, we choose w, = 0.5 and w, = 0.1, as this is where
the decrease in formation error begins to slow.

8.3. Formation coordination performance

Finally, we evaluate the efficacy of our multi-formation coordina-
tion approach. We demonstrate scalability up to 23 formations and
92 robots. For each number of formations ranging from 2 to 23, we
generate 30 random problems, where each problem is a set of start
and target positions for each formation. Across all problem instances,
no robot begins or terminates its motion in any critical section, as
discussed in Section 6.2. In Fig. 18(a), we detail the computation time
for our approach to achive coordination, i.e. lines 3-18 of Alg. 5.
Our approach scales exponentially in the number of formations, as the
robots are coupled during coordination. However, the trajectory opti-
misation time (lines 19-23 in Alg. 5) scales linearly in the number of
robots if we compute each robot’s trajectory in sequence. We illustrate
this in Fig. 18(b). In practice, each robot’s trajectory can be computed
in parallel after coordination.

We also compare our coordination approach to the prioritised DWA
proposed in [22], where coordination is only initiated when one forma-
tion detects another. We demonstrate this approach using the example
in Fig. 10(e)- Fig. 10(h). Here, formation A detects formation B, where
formation B has a higher priority. Formation A then creates a new
safe convex region using IRIS which avoids formation B and nearby
obstacles. This causes formation A to avoid formation B by deviating
from its original trajectory. This is repeated until formation B has
cleared formation A’s path, at which point formation A can continue
to track its trajectory towards the target. This ad-hoc approach often
avoids collisions, but causes robots to travel further than our approach,
where robots wait. Moreover, unlike our approach collision avoidance
is not guaranteed. For the formation coordination problems generated
above, we measure the success rate, total running time (i.e. the total
time to run Alg. 5), makespan, and average travel distance of the two
approaches. Upon reaching 15 formations, the success rate of prioritised
DWA drops to zero, whereas our method retains a 100% success rate,
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Fig. 16. The performance of formation planning under varying values of the smoothness cost weight w, in (8) and the formation error cost weight w, in (17). As w, increases,
smoother trajectories are synthesised. As w, increases, the formation receives heavier penalties for breaking rigidity.

Table 4

The computation time for each formation planning component.
Number of robots

Safe corridor generation

Coarse path planning
Linear formation (2 car-like)

Triangular formation (1 diff-drive + 2 car-like)
Rectangular formation (2 diff-drive + 2 car-like)

Trajectory optimisation
2.904 ms + 1.451 ms

2.978 ms + 1.264 ms
2.965 ms + 1.628 ms

65.204 ms + 39.085 ms
84.241 ms + 54.553 ms
75.953 ms +47.587 ms

1820.948 ms + 1018.799 ms
2617.272 ms + 1498.528 ms
2647.546 ms + 1217.983 ms
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Table 5
The time to optimise trajectories for leader and follower robots.
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Number of robots

Trajectory optimisation (leader)

Trajectory optimisation (followers)

Linear formation (2 car-like)
Triangular formation (1 diff-drive + 2 car-like)
Rectangular formation (2 diff-drive + 2 car-like)

1555.389 ms +915.513 ms
2070.89 ms + 1238.453 ms
1954.89 ms + 945.326 ms

265.559 ms + 121.393 ms
546.382 ms + 295.349 ms
692.656 ms + 313.688 ms

Table 6
The maximum steering angles ¢,,,,.,
e for different formations. Units are shown in square brackets.

maximum velocities v,,,, average velocities v, maximum formation errors e,,,,, and average formation error

Number of robots Dpax [rad] Unax [7] vIT] €ax [mm] e [mm]

Linear formation (2 car-like) 0.575 +0.148 0.952 +0.021 0.776 + 0.094 104.591 + 13.339 77.097 +7.431
Triangular formation (1 diff-drive + 2 car-like) 0.579 +0.081 0.954 +0.034 0.755 +£0.104 172.278 +24.151 89.403 +8.919
Rectangular formation (2 diff-drive + 2 car-like) 0.567 + 0.135 0.955 +0.022 0.762 + 0.089 178.444 + 15.086 92.988 + 6.733

104
Il Safe corridor generation
mmm Coarse path planning

B Trajectory optimization

103 4

102 4

Time [ms]

101 4

100 4

Linear formation

Triangular formation
Formation type

Rectangular formation

Fig. 17. The computation time for each formation planning component.

as shown in Fig. 18(c). Our approach is guaranteed to be collision-free
so long as the formations adhere to their updated paths, i.e. the prece-
dence constraints are satisfied. Conversely, prioritised DWA is myopic,
and can lead to frequent deadlocks in tightly constrained environments.
Our approach is also more computationally efficient than prioritised
DWA, as shown in Fig. 18(d), as prioritised DWA requires convex region
updates at each time step, which is expensive. We present the makespan
and travel distance results in Fig. 18(e) and Fig. 18(f), respectively. Our
approach produces lower makespans and shorter trajectories. Under
our method, low priority formations wait at critical sections rather than
deviate from their original path. This means the distance travelled is
unchanged from the original trajectories. In contrast, under prioritised
DWA [22], robots repeatedly deviate from their original trajectory to
prevent collisions, which increases the travel distance and makespan,
as illustrated in Fig. 10.

8.4. Demonstration of the H-MFPC framework

In this section, we provide a complete demonstration of our H-MFPC
framework in Gazebo [51]. The simulation results are recorded in our
supplementary video, with snapshots shown in Fig. 19(f). Here, we
use the Agilex Hunter 2.0 [52] for car-like robots, and the MiR-100
transport robot [53] for differential-drive robots. We use a random
environment, where each obstacle is a convex polygon generated by
randomly selecting four points on the circumference of a randomly
generated circle. We use the control law in Section 7 to control car-like
robots using the front wheel steering angle and rear wheel velocity,
and to control differential-drive robots using the velocity and angular
velocity. The simulation task involves six car-like robots and four
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differential-drive robots. The robots must form two triangular forma-
tions and one rectangular formation, as shown by the dashed shapes in
Fig. 19(a). We apply the formation generation approach in Section 4 to
drive each robot to their formation locations, as shown in Fig. 19(b).
After the formations are generated, each formation must navigate to
its target position, as shown by the solid shapes in Fig. 19. We apply
the formation planner in Section 5 to synthesise feasible trajectories for
each formation. In Fig. 19(d), the green rectangular formation is close
to colliding with the yellow triangular formation. Therefore, we apply
the formation coordination method in Section 6 such that the green
rectangular formation yields to the yellow triangular formation. Forma-
tion coordination is applied again in Fig. 19(e), where the red triangular
formation must yield to the green rectangular formation. In Fig. 19(f),
each formation successfully reaches their target configuration.

9. Conclusion

In this paper, we have proposed a comprehensive framework for H-
MFPC. During the formation generation phase, we integrate a conflict-
based multi-agent path finding with enhanced trajectory optimisation,
thereby ensuring the algorithm’s robustness and scalability. In the
context of formation planning, we propose an iterative two-stage tra-
jectory optimisation approach, aiming to satisfy kinematic constraints
while concurrently minimising the total time cost of the entire forma-
tion. Regarding formation coordination, we present a loosely coupled
multi-formation coordination algorithm, specifically designed to re-
solve deadlock and inter-formation collisions. In future work, we will
adapt our framework to handle dynamic and human-populated envi-
ronments. Such environments have multiple sources of uncertainty,
such as unexpected obstacle appearance, or robot delays during exe-
cution. Therefore, we will capture the effects of uncertainty on robot
execution to synthesise robust formation behaviour. We will also relax
the rigid formation constraints to allow flexible and efficient object
transportation which can navigate through obstacles by adjusting the
object height. Additionally, to achieve safer and more reliable trans-
portation we plan to incorporate dynamic characteristics (such as the
object’s mass and inertia) into the proposed kinematic-based control
framework, dynamically adjusting the robots’ trajectories to account for
load variations caused by the terrain or other factors.
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(a) A set of six car-like robots and four differential-drive robots must (b) The robots navigate to their formation locations.
form two triangular formations and one rectangular formation.

(c) The robots reach their formation locations and begin to navigate  (d) The green rectangular formation yields to the yellow triangular
towards their target configurations. formation.

(e) The red triangular formation yields to the green rectangular forma- (f) Each formation successfully reaches its target configuration.
tion.

Fig. 19. An end-to-end demonstration of our H-MFPC framework.
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